
A single chip
micro-nose

Diploma Thesis
Christian Herzog

March 2001

ETH Zurich / Physical Electronics Lab

Head: Prof. Dr. Henry Baltes
Supervisor: Christoph Hagleitner

1

1 INTRODUCTION 5
1.1 Overview 5
1.2 This thesis 5
1.3 The project 5

2 DIGITAL PART 9
2.1 Communication: from PC to SMC and back 9

2.1.1 PC <-> uC 9
2.1.2 uC <-> SMC 12

2.2 The Register bank 13
2.2.1 The capacitive sensor 13
2.2.2 The calorimetric sensor 14
2.2.3 The resonant sensor 15

2.3 Digital part of each sensor 16
2.3.1 Capacitive and resonant sensor 16
2.3.2 Calorimetric sensor 17

3 ANALOG PART 19
3.1 Analog part of each sensor 19

3.1.1 Capacitive sensor 19
3.1.2 Calorimetric sensor 19
3.1.3 Resonant sensor 21

4 THE CAPACITIVE SENSOR 23
4.1 Sensor principle 23

5 THE CALORIMETRIC SENSOR 25
5.1 Sensor principle 25

6 THE RESONANT SENSOR 27
6.1 Sensor principle 27

7 THE TEMPERATURE SENSOR 29
7.1 Sensor principle 29

8 TESTING OF VLSI AND MIXED SIGNAL ICS 32
8.1 Theory 32

8.1.1 Introduction 32
8.1.2 Fault models 33

2

8.1.3 Controllability and observability 33
8.1.4 Scan chain 34
8.1.5 Algorithms 35

8.2 The setup 35
8.2.1 Wafer handling and electrical contact 36
8.2.2 The supply PCB 38
8.2.3 The test vectors 40
8.2.4 The tester 42
8.2.5 What to test? 45
8.2.6 Digital part 46
8.2.7 The asynchronous counters 50
8.2.8 The sensors 52
8.2.9 The capacitive sensor 53
8.2.10The calorimetric sensor 56
8.2.11The resonant sensor 57
8.2.12The temperature sensor 58

8.3 Summary 58
8.4 Results 58
8.5 Future improvements 61

8.5.1 Asynchronous counters 61
8.5.2 The resonant sensor 62
8.5.3 Other ideas 62

9 GAS MEASUREMENTS 63
9.1 Description and results 63

ACKNOWLEDGEMENTS 70

REFERENCES 71

LIST OF FIGURES 73

APPENDIX 1 75
xform.pl 75

APPENDIX 2 77
Web based scan chain generator 77

APPENDIX 3 83
Scan chain vector generation 83

3

APPENDIX 4 87
Readout scripts 87

APPENDIX 5 91
RPI control program 91

APPENDIX 6 93
Scan chain 93

4

1.1 Overview

5

1 INTRODUCTION

1.1 OVERVIEW

In the projectA single chip micro nose, an integrated gas sensing system realized
in CMOS technology is being developed. Using appropriate polymers, this sen-
sor can determine the concentration of a specific or some similar gases in an
atmosphere. In order to get information about the composition of a gas mixture,
several sensor chips using different polymers are linked together, and their output
is processed by a micro controller.

1.2 THIS THESIS

The scope of this diploma thesis is the following: to give a description of the dif-
ferent parts (sensors, analog and digital part) of the micronose chip, to establish
the communication sensor-µC andµC-PC, and, most importantly, to develop a
test setup which enables us to discriminate working and defunct chips on the
wafer level. Both the analog and digital side of the circuit should be tested. Fur-
thermore, test the chips for overall functionality in a gas measurement setup.

1.3 THE PROJECT

Thesingle chip micro noseis a joint project of thePhysical Electronics Labat the
Institute of Quantum Electronics, ETH Zurich, Switzerland (PEL), the Depart-
ment of Electronics(DEIS), University of Bologna, Italy, and theInstitut fuer
physikalische Chemie (IPC), University of Tuebingen, Germany. The project is
funded by theKoerber Foundationand should provide a working prototype in
March 2001. The final goal is to have a battery powered handheld device that
gives the concentrations of different gases in the atmosphere. The device contains
six sensor chips or Standard Micronose Chips (SMCs) and a micro controller for
data processing and the user interface. Each SMC is coated with a chemically
sensitive polymer that exhibits changes in its chemical or physical properties
depending on the concentration of one or several analytes. These changes are

1 Introduction

6

then measured exploiting three different sensor principles on each chip. A tem-
perature sensor has also been included for thermal compensation. The output of
these 24 sensors is preprocessed on-chip and is then sent via a serial interface to a
µC which does the final processing and displays the results. The six SMCs are
mounted on a ceramic substrate. Two different package types were produced.
The first version (Fig. 1.1) uses flip-chip bonding to connect the six chips and fix

them upside down on a ceramic substrate. The second version (Fig. 1.2) uses nor-
mal die attach and wedge bonding to connect the chips on the ceramic substrate.
Then a glob-top is applied to seal the connections.

In Fig. 1.3 a schematic of all the parts of the SMC is shown. They are described
in detail in the following chapters.

Fig. 1.1: Photograph of the SMC, flipchip version

1.3 The project

7

Fig. 1.2: Photograph of the SMC, globtop version

1 Introduction

8 F
ig. 1

.3
:

S
ch

e
m

a
tic ove

rview
 fo

r th
e

 S
M

C

Heater

Wheat-
stone

Sensor

Reference

Thermo-
piles

Heater

Temp.

∆t

sinc3

gate time

Value
counter

counter.

R
eg

is
te

r

gate time

Value
counter

counter.

R
eg

is
te

r

Σ∆ ADC

M
U

X

Σ∆ ADC FIR

MUX

Delay

M
U

X

I2C

Register-
bank

SDA
M

U
X

Σ∆ ADC

ChopperChopper

Resonant
Sensor

Capacitive
Sensor

Calorimetric
Sensor

Temperature
Sensor

2.1 Communication: from PC to SMC and back

9

2 DIGITAL PART

2.1 COMMUNICATION : FROM PC TO SMC AND BACK

While the final target of the project is to have a handheld device which includes
six SMCs and a micro controller, for our testing purposes and the early gas mea-
surements it is important to have a more flexible way of controlling the SMC and
collecting the data. Therefore we chose the following approach [Tab. 2.1].

On the PC we have a program running on a version of UNIX (in our case Linux)
that takes the user’s commands from an interface, assembles them into a simple
protocol described below and sends them to theµC via a standard RS232 serial
line. TheµC receives them, converts them to the I2C protocol that the sensor is
speaking, and sends them over the I2C line to the SMC. For the sensor values, it
just goes the same chain backwards up to the PC, where the program logs the
measurement data to a file and prints them to the screen. In this way, we could
already develop theµC part of the project and later only replace the PC <->µC
routines by the desiredµC user interface.

We now describe the two stages of communication and the associated protocols.

2.1.1 PC <->UC

The protocol used for this part has changed considerably as the user interface on
the PC and the program on theµC evolved. Earlier versions of theµC code
polled the serial line for incoming data, but as explained in detail below, this
caused problems and had to be fixed.

Tab. 2.1: The different stages of communication in the project

Device Protocol Device Protocol Device
PC <---> SMC <---> µC

RS232 I2C

2 Digital part

10

Reception on the PC was unreliable for the same reason. The ‘read serial’ routine
was changed from polling to irq driven operation to resolve that problem. The
basic code is very elegant in C; see Fig. 2.1. Whenwait_flaghas been set to 0 by

the interrupt routine, a loop takes care of reading out the data. There’s even a sim-
ple form of error management built into the RS232 protocol. The data format
looks like this:

int open_sdev(struct termios *old_pt)

{ int dsc;
struct termios new;
struct sigaction saio;

dsc = open("/dev/ttyS0", O_RDWR | O_NOCTTY | O_NONBLOCK);

/* install the signal handler before making the device asynchronous */
saio.sa_handler = signal_handler_IO;
saio.sa_flags = 0;
saio.sa_restorer = NULL;
sigaction(SIGIO,&saio,NULL);

/* allow the process to receive SIGIO */
fcntl(dsc, F_SETOWN, getpid());

/* Make the file descriptor asynchronous (the manual page says only
O_APPEND and O_NONBLOCK, will work with F_SETFL...) */
fcntl(dsc, F_SETFL, FASYNC);
tcgetattr(dsc,old_pt);/* save current port settings */
memset(&new,0,sizeof(new));

/* set new port settings for canonical input processing */
new.c_cflag = 38400 | CLOCAL | CREAD | CS8;
new.c_iflag = IGNPAR | IGNBRK;
new.c_oflag = 0;
new.c_lflag = 0;
new.c_cc[VMIN]=1;
new.c_cc[VTIME]=0;
cfsetspeed(&new,B38400);/* set output speed */
tcflush(dsc, TCIOFLUSH);
tcsetattr(dsc,TCSANOW,&new);
return dsc;
}

==
void signal_handler_IO (int status)
{
wait_flag = 0;
}

Fig. 2.1: Signal handler and irq initialization of serial port

2.1 Communication: from PC to SMC and back

11

PACKET TYPES RECEIVED BY THE PC

data packet:

• flag byte (0x01)

• sensor address byte

• first parameter byte

• second parameter byte

• third parameter byte

PACKET TYPES SENT BY THE PC

two byte command packet:

• flag byte (0x02)

• target address byte

three byte command packet:

• flag byte (0x03)

• target address byte

• command byte

four byte command packet:

• flag byte (0x04)

• target address byte

• command byte

• register value byte

In the next version, we plan to include the flag byte, which indicates the type of
the data packet, into some of the unused bits of another byte in order to save
bandwidth on the serial line.

2 Digital part

12

2.1.2 UC <-> SMC

The I2C (Inter IC bus) is a rather simple synchronous serial protocol developed
by Philips in the 1970s. It uses three lines for communication: ground, SCL (a
bidirectional clock line that is being pulled down with the clock frequency while
data is being sent) and SDA (the bidirectional data line). The I2C definition by
Philips has two different modes: the normal clock mode up to 100 kHz and the
fast mode up to 400 kHz. For the SMC, the fast mode is used. SCL and SDA are
realized as open-collector drivers. The I2C is a bus which can be accessed by sev-
eral devices (up to 127). Each device has a unique bus address and can act as
Master or Slave. A master can initiate a transfer which the addressed slave then
answers. The I2C uses a sophisticated arbitration scheme in order to avoid bus
collisions. Details can be found in [1] and [2]. In our case, we use the I2C to
establish a communication between the SMC and the external micro controller.
The I2C controller on the SMC receives the commands coming from theµC,
passes them to the sensors and sends their answers back to theµC. The transmis-
sion protocol between SMC andµC can be divided into a hardware and a soft-
ware part. The hardware protocol is explained in detail in [2], so it won’t be
covered here. The software part however has seen several modifications. The
original version had severe timing problems and lost packets as it was polling
both the serial and the I2C interface of theµC. The usual solution to such a prob-
lem is the use of interrupt driven reception routines. We proposed and imple-
mented two irq routines. Of course, these two routines could disturb each other if
the both get called on the same time. Therefore, an idea was necessary that pre-
vents interaction. As the I2C bus has better arbitration and error handling capa-
bilities than the serial line, we assigned a higher priority to serial communication.
Therefore, the serial routines pull down the SCL line in order to avoid I2C traffic
while they’re busy. Currently, there are two suites of program versions available
for theµC and the PC. The old version allows only one command to be transmit-
ted to theµC, while the new PC software loops the input user interface routine.
As the communications protocol has changed between the two revisions, be sure
to download the right code to the flash memory of theµC using the ‘flash’ shell
script.

The software I2C protocol between SMC andµC looks like this: Tab. 2.2

The bit order and the function of the bytes are still the same and can be found in
[2].

2.2 The Register bank

13

2.2 THE REGISTER BANK

The SMC uses a register bank to control the settings of each sensor. The registers
can be read and written via the I2C bus using commands that are specified in [2].
Each sensor can have up to 16 registers, called ComReg1..16. In the present
design however, only some of them are used, so there is space for future enhance-
ments. The registers can have different word lengths, depending on the desired
value range. We now describe the bank for the capacitive, the calorimetric and
the resonant sensor, and the way these registers change the settings of the sen-
sors.

While working with the register bank of the SMC, an error was found in the
design: normally, all registers can be set to a value, and this value can be read out
afterwards. However, for one bit in ComReg3, the reading fails. After a redesign,
we will see if the bug still exists in the second run.

2.2.1 THE CAPACITIVE SENSOR

ComReg1 (4 bits): specifies the Power-on delay. Values 0..15 correspond to time
intervals of 320µs to 10.5 s, according to the formula

When one of the commands “on-read-off one” or “on-read many” is issued, the
sensor waits for the time given by ComReg1 before the value is read. This
enables the user to make sure that a stable signal is read after power has been
turned on.

ComReg2 (4 bits): Sample delay. As in ComReg1, delays of 320 us to 10.5 s can
be set which determine the sample frequency 1/T of the sensor. Therefore, sam-

Tab. 2.2: The software protocol

byte 0 byte 1 byte 1 byte 3 byte 4

SMC
address

sensor
address

com-
mand/1st

2nd opt.
byte

3rd opt.
byte

T
256 2

x⋅
f Clk

-------------------=

2 Digital part

14

ple frequencies of 0.095 up to 3125 Hz can be used. Commands “Read many”
and “On-read many” send values according to this frequency.

ComReg3 (3 bits): gate time of the decimation counter. Values 0..7 result in gate
times of 0.00512 to 0.655 s, according to

The gate time specifies how long the counter opens its gate before it returns the
value. This allows scaling of the output and gives the possibility to choose
between speed and accuracy. This setting is valid for the capacitive and the reso-
nant sensor.

ComReg4 (6 bits): values of 0..63 determine the size of the interdigital compen-
sation capacitance. It can also be used to scale the output.

ComReg5 (5 bits):parameters of the capacitive sensor.

Bit 0 and 1: Bitstream multiplier. With these bits it is possible to clock
the AD converter up to 4 times slower than the rest. This
multiplies the output signal with 1, 2, 3 or 4.

Bit 2 and 3: EnCap and EnCapFB. These bits toggle between the
poly-poly capacitances for voltage measurement and the
interdigital capacitors for capacitive measurement. The volt-
age input is connected to the output of the calorimetric sen-
sor in order to provide a backup test. Note that for the normal
capacitive use, these bits have to be turned on (they’re off
after startup).

Bit 4: Selects the input of the decimation counter. This bit does not
control the power-on signal of the temperature sensor. To
switch it on, bit 0 in ComReg3 of the calorimetric sensor has
to be set to one. 0 selects the capacitive sensor, 1 selects the
temperature sensor.

2.2.2 THE CALORIMETRIC SENSOR

ComReg1 (4 bits)andComReg2 (4 bits)have the same function as in the capac-
itive sensor. All notes made above apply without change.

T
256 16 2

x⋅ ⋅
f Clk

-----------------------------=

2.2 The Register bank

15

ComReg3 (6 bits): parameters of the calorimetric sensor

Bit 0: Sensor select. Select calorimetric sensor (low) or tempera-
ture sensor (high).

Bit 1: G5_BP. The first amplifier and the bandpass amplifier in the
sensor circuit have a gain which can be divided by 4. Bit 1
does that for the band pass amplifier. It can be used to avoid
saturation in the amp.

Bit 2: G5_PreAmp. This bit acts like bit 1, but in the preamp. With
both bits high, gain is reduced by a factor of 16.

Bit 3: Heater select. With this bit, the on-chip heating current can
be toggled between the sensor and the reference thermopile.
This is used for testing purposes.

Bit 4 and 5: Current select. These two bits determine the heater current
for testing the sensor. Bit patterns of 00, 01 and 11 lead to
currents of 0, 15 and 30µA, respectively. The combination
10 is identical to 00.

2.2.3 THE RESONANT SENSOR

ComReg1 (4 bits)andComReg2 (4 bits)are the same as in the other two sen-
sors.

ComReg3 (7 bits): parameters of the resonant sensors

Bit 0, 1, 2: Select delay. Each of these bits adds a delay of 200 ns. So
000, 001, 011 and 111 correspond to 0, 200, 400, 600 ns,
respectively.

Bit 3 and 4: Select current. Multiplies the current in the delay line with 1,
2, 3 or 4 and thus reduces the delay time by the same factor

Bit 5: Divide current. Divides the supply current in the amplifier by
two. This leads to a phase shift of +15 degrees.

Bit 6: Double current. Doubles the amplifier supply current and
shifts the phase by -15 degrees.

2 Digital part

16

2.3 DIGITAL PART OF EACH SENSOR

In the following section, we describe the digital part of each sensor. That is all the
digital circuitry on the SMC that does not belong to the I2C interface and the reg-
ister bank, as we already discussed them above. The general outline looks as fol-
lows: (Fig. 1.3). The outputs of the different sensors come together in a
multiplexer which decides the output of which sensor is written into the DataOut
register and then chopped into bytes to go over the I2C line. A difference
between the digital parts of our sensors becomes important as soon as we talk
about testing in Chapter 8: while the calorimetric sensor has a fully synchronous
digital part, the capacitive and resonant sensors have asynchronous counters.

2.3.1 CAPACITIVE AND RESONANT SENSOR

The circuitry connecting to the multiplexer mentioned above is given in Fig. 2.2.

We see an asynchronous counter which counts the transitions of the sensor signal
entering as a bit stream from the left and is reset by a second asynchronous
counter, the gate time counter. The gate time counter counts down from the value
given by ComReg3 in the register of the capacitive sensor. On the transition 0 ->
-1, it loads the current counter value of the sensor counter into the output register
and then resets the sensor counter. While this asynchronous design is very easy to
understand, the calorimetric sensor needs a more sophisticated circuitry.

Fig. 2.2: Digital part of capacitive and resonant sensor

gate time

Value
counter

counter.

R
eg

is
te

r

Reset

Load

2.3 Digital part of each sensor

17

2.3.2 CALORIMETRIC SENSOR

As can be seen in Fig. 2.3, the calorimetric sensor consists of a digital filter, a
downsampling stage, another filter, a second downsampling stage, and the con-
nection to the multiplexer. The bitstream entering from the left is first filtered by
the sinc3 filter with a frequency characteristic as in Fig. 2.4. In the following

downsampling stage, the sampling rate of the bitstream is reduced by a factor of
32. The higher spectral parts of the signal are therefore convoluted into the low
frequency signal, but the high frequency suppression of the sinc3 filter ensures
that this is not a problem. The second filter, a FIR (finite impulse response), again
acts as a lowpass with characteristic desired for the signal band. The second

Fig. 2.3: Digital part of calorimetric sensor

Fig. 2.4: Frequency characteristics of the two filters

sinc3 FIR

R
eg

is
te

r

Amplitude

Frequency

Characteristic
of sinc3

Characteristic
of FIR

max. signal
frequency

chopper
frequency
(see 3.1.2)

2 Digital part

18

downsampling stage further reduces the sampling rate so that we have a reduc-
tion of 128 at the end of the filter bank. Thus, we at the output we have a fre-
quency of

or about 800 Hz.

f
800kHz
8 128⋅

f sampling
128

f Clk

PreScaleFactor
------------------------------------ 1

128
---------⋅= = =

3.1 Analog part of each sensor

19

3 ANALOG PART

The analog circuitry on the SMC deals with the sensor outputs and the ana-
log/digital converter before they are fed into the digital filter chain. We will
describe the analog part of each sensor and the delay line which determines the
timing of the I2C interface.

3.1 ANALOG PART OF EACH SENSOR

3.1.1 CAPACITIVE SENSOR

The only analog part of the capacitive sensor is theΣ∆ A/D converter, since the
sensor and reference capacitance are directly incorporated into the converter.
Fig. 3.1 shows a schematic drawing of the first integrator in the converter includ-
ing the sensor and reference capacitor.φ and/φ are complementary nonoverlap-
ping clocks [5]. For the theory ofΣ∆ A/D converters, see [3]. Please also refer to
Chapter 4 where we discuss the sensor in more detail.

3.1.2 CALORIMETRIC SENSOR

The basic job of the analog part of the calorimetric sensor is amplification. As the
signals coming from the thermopiles are very weak, they have to be amplified
roughly 10’000 times. With a traditional amplification scheme, we’d run into two
problems:

• even the smallest DC offset at the input of the amplifier would overdrive
the A/D converter at the output

• the 1/f noise, amplified by 10’000 in the first amplifier, would mask our
signals

Therefore, an interesting amplification concept is used here: a chopper instru-
mentation amplifier [4]. A schematic of the amplification stage is shown in
Fig. 3.2. The thermocouple voltage entering from the left is first chopped with a
frequency of about 5 kHz, which means that it is modulated with a square wave
of that frequency. This shifts our signal to higher frequencies. After the first
amplifier, the signal is bandpass filtered. The filter eliminates two problems:

3 Analog part

20

Fig. 3.1: Schematic of the 1st integrator of theΣ∆ A/D converter

Fig. 3.2: Analog part of the calorimetric sensor

to
 2

nd
 in

te
gr

at
orφint

Cint

φint

φint Cint

φint

Vfb
φΣ∆

φΣ∆

Cfb

reference

C /2S

2C /S

φint
φint

φint φint

φint

φint φint

C /2R

C /2R

sensor

V
re

f

Vfb

φΣ∆ φΣ∆

Cfb

φint

ChopperChopper

3.1 Analog part of each sensor

21

• saturation in the output is avoided as the DC offset is removed

• the so called residual offset (demodulated signals from higher harmonics
of the chopper frequency), is reduced.

After the third amplifier, the signal is demodulated. This translates the sensor out-
put back to DC, with 1/f noise and DC offset mostly removed.

Special attention has to be paid to the two important frequencies in this circuit:
the center frequency of the bandpass filter and the chopper frequency. As they
have to coincide (severe phase problems would occur otherwise), no divided
clock signal is used for the chopper frequency. Instead, a second filter is used in
feedback mode to generate the chopper frequency. After amplification, the signal
passes an anti-aliasing filter which cuts off all spectral parts above half of the
sampling frequency of theΣ∆ A/D converter.

3.1.3 RESONANT SENSOR

The output of the resonant sensor is a sine. In order for the feedback loop to work
(see chapter 6, The resonant sensor), we need to transform it into a digital signal
with the same frequency. If we only amplified the sine and used it to drive the
cantilever, we’d get no excitation at the base frequency but at the second har-
monic (). The analog stage that does this is out-
lined in Fig. 3.3. The weak signal coming from the Wheatstone bridge is passing

three amplifiers, all in fully differential design. The first and the third only
amplify the amplitude, the second additionally performs a high pass filtering of
the signal. The amplified signal then passes a comparator that converts it into a
digital square wave. The delay which is required by the feedback is added by the
circuit shown in Fig. 3.4.

Fig. 3.3: Feedback loop of the resonant sensor

P U
2 ωtsin()2∼ ∼ 1

2
--- 1 2ωtcos–()=

Heater

Wheat-
stone ∆t

3 Analog part

22

First, a buffer decouples the signal from the comparator. Then, we have two cur-
rent sources and two complementary transistors, one of which is closed and the
other open, depending on the state of the input. Their outputs are connected to a
capacitor and a Schmidt-Trigger. The hysteresis of the Schmidt-Trigger ensures
that its output does not change until the capacitor has been loaded or emptied for
a certain time. In this way, we can control the delay time by the current that is
provided by the current sources.

The amplified, digitized and delayed signal then goes to the driver of the electro-
thermal actuation stage which provides the resonant supply for the cantilever.

Apart from this delay line, we have another one which determines the timing of
the I2C interface. According to the I2C specifications, it has to provide a delay of
300-600 ns.

Fig. 3.4: Schematic of the delay line

I

I

4.1 Sensor principle

23

4 THE CAPACITIVE SENSOR

4.1 SENSOR PRINCIPLE

The capacitive sensor is in a way the most direct one. It uses two capacitors and
measures the change in their capacitance difference as one of them changes its
value due to the analyte. For that reason, one of the capacitors is sealed with
oxide while the other one is coated with the polymer. The polymer changes its
dielectric constant upon absorption of analyte. Fig. 4.1 shows the two main

effects: polarization and swelling. In Fig. 4.2 we see the basic circuit diagram of
the sensor capacitors and theΣ∆ A/D converter attached to it. While in earlier
designs the difference in capacitance was detected directly by a differential
amplifier, the SMC uses a different design where each capacitor is split into two
parts. This avoids the main problem the old design had: a loss of sensor signal

Fig. 4.1: Changes in polymer due to analyte

Elektroden

AnalytPolymer

Substrat polarisierter Analyt

Luft

Polarisierung SchwellungAbsorbtion

Polymer

Substrate

Electrodes

Analyte

polarized analyte

Air

Absorption Polarization Swelling

4 The capacitive sensor

24

charge due to the common-mode voltage change at the input of the differential
amplifier. Details can be found in [5].

The sensor and the reference capacitors are used as the input capacitors of the
switched-capacitor integrator of theΣ∆ converter. Thus, we directly generate a
bitstream proportional to the difference of the two capacitances and therefore the
analyte concentration. Details on the capacitive sensor can be found in [6].

Fig. 4.2: Schematic of theΣ∆ converter, different capacitors

SC

fb1’CRC

fb1C fb2C

fb2’C

di
gi

ta
l

lo
gi

c

fr
eq

ue
nc

y
co

un
te

r

5.1 Sensor principle

25

5 THE CALORIMETRIC

SENSOR

5.1 SENSOR PRINCIPLE

The calorimetric sensor (Fig. 5.1) can give additional information. This can help
to distinguish between different analytes that yield similar sensor responses on
the other sensors. We have a thermally insulated structure, in our case an n-well
island membrane of the CMOS process. This membrane is coated with the chem-
ically sensitive polymer and contains a great number of polysilicon/aluminum
thermopiles along its edges. When analyte is absorbed into or desorbed from the
polymer, the enthalpy in this layer changes. This enthalpy change manifests as a
temperature change on the island structure. The thermopiles convert a tempera-
ture difference between island and substrate into a voltage which is fed to the
A/D converter. Thus, we get a transient signal which is proportional to the deriv-
ative of the concentration of the analyte as a function of time: dc/dt.

A typical measurement with the calorimetric sensor are given in Fig. 5.2. A peak
in the positive y-direction occurs when the analyte is absorbed, and the peak is
negative when it is desorbed. In order to get information about the concentration
of the analyte, we have to integrate the thermovoltage over time. The area under a
peak is a measure for the amount of analyte. Inspection of Fig. 5.2 reveals that
most of the time the signal will be close to zero, but when gas is absorbed or des-
orbed, we have to get many samples in a short time in order to be able to integrate
over the correct shape of the peak.

Furthermore, the island structure contains a polysilicon heater which can be used
to test the device. The membrane itself is released in a post-processing KOH
etching step with electrochemical etch stop. Details about calorimetric sensors
can be found in [7].

5 The calorimetric sensor

26

Fig. 5.1: Schematic drawing of the calorimetric sensor

Fig. 5.2: Typical measurement graph of the calorimetric sensor

Resistive heater

Thermopile

N-well island membrane

-1000

-500

0

500

1000

10 20 30 40

-30

-20

-10

0

10

20

30

Time

Concentration

6.1 Sensor principle

27

6 THE RESONANT SENSOR

6.1 SENSOR PRINCIPLE

The resonant sensor detects the shift of the resonance frequency in a cantilever in
resonant vibration. When the analyte is absorbed into the polymer which coats
the cantilever, the mass of the cantilever-polymer system increases and therefore
the resonance frequency is decreased.

In Fig. 6.1 the general setup for such a sensor is given. We have a rectangular
cantilever consisting of a n-well and the dielectric layers of the CMOS process.
The cantilever is coated with the polymer and after that has been released by a
post-processing etch step. At its clamped edge, the cantilever features two heat-
ing resistors and four sensor resistors in Wheatstone configuration are built in.
When the heating resistors are supplied with a heater current, they electrother-
mally excite the cantilever locally and cause it to bend. The Wheatstone bridge
uses the piezoresistive effect to detect this displacement. If we now succeed in

Fig. 6.1: Schematic drawing of the resonant sensor

Sensitive layer

p-Substrate

n-Well

Dielectric layers

Heating resistors

Piezo-
resistors

p-Diffusion

6 The resonant sensor

28

amplifying the output signal, delay it for half the resonance clock period of the
cantilever, and feed it back to the actuation resistors, we can force the cantilever
into resonance vibration.

As the resonance frequency is stable down to 0.05 Hz as measurements have
shown [8], this system is very sensitive to changes in analyte concentration which
reach the order of kHz. As an additional advantage, the quasi-digital output in the
form of a frequency can directly be fed into the counter.

7.1 Sensor principle

29

7 THE TEMPERATURE

SENSOR

7.1 SENSOR PRINCIPLE

In addition to the three gas sensors, the SMC contains a temperature sensor. It
can be used to compensate for the temperature dependence of the capacitive, cal-
orimetric and resonant sensors. In the schematic overview of the SMC (Fig. 1.3)
we see that the bitstream of the temperature sensor can be fed into the filter chain
of either the capacitive or the calorimetric sensor. We will now give a short
description of how this sensor works. Please refer to [9] for details.

The underlying measurement principle is to use the temperature dependence of
the base-emitter-voltage of a bipolar transistor in the CMOS process. The
base-emitter-voltage changes with temperature roughly like this (Fig. 7.1):

Fig. 7.1: Temperature dependence of the base-emitter-voltage of a bipolar
transistor

T

VBE

7 The temperature sensor

30

Of course, we want a linear temperature dependence of the output signal. This
can be achieved by a circuit sporting two bipolar transistors (Fig. 7.2). If we drive

one of them with the current I and the other one with k*I, we will get a tempera-
ture dependence of the difference of the two voltages taken at points A and B
which is governed by

Thus, we have the desired linear dependence. Of course we have to convert this
voltage into a digital signal. OurΣ∆ A/D converter needs a reference voltage to
do this. Most on-chip references compensate the temperature dependence of the
base-emitter voltage of a bipolar transistor in some way to realize a voltage that is
constant over temperature. Thus, the measured voltage and the reference voltage
are based on the same principle. A one-bit switched capacitorΣ∆ A/D-converter
is a sampled system that feeds (Vin ± Vref) into its first integrator in every cycle.
We can subdivide this cycle and generate the sensor and reference voltage from
the same sensing transistor. This avoids separate circuitry for the reference volt-
age as well as matching problems.

The bitstream from the converter can be read out via the capacitive or calorimet-
ric filter bank.

Fig. 7.2: Basic idea for the temperature sensor

T

Vs

I k*I

A B

V k() T×ln∝

7.1 Sensor principle

31

8 Testing of VLSI and mixed signal ICs

32

8 TESTING OF VLSI AND

MIXED SIGNAL ICS

8.1 THEORY

8.1.1 INTRODUCTION

As the complexity of VLSI circuits and microprocessors gets bigger and bigger,
testing becomes an inevitable means for quality control. For today´s highly com-
plex ICs, the cost for testing can already exceed that for production (Fig. 8.1),
[10].

Fig. 8.1: Testing cost will soon exceed production cost

8.1 Theory

33

In our special case, where 6 SMCs are flip chip or globtop bonded on a ceramic
substrate, we have to be absolutely sure to have 6 working chips as only one
defunct sensor would render the whole module useless. Therefore, a thorough
and exhaustive testing scheme for all parts of the SMC (digital part, analog part,
sensors) was to be developed. Only small amounts of chips have to be tested in
the current project (one wafer holds only 16 chips). However, for proof of con-
cept, the basics of commercial VLSI testing were not to be forgotten: time is
money. While the fabrication of the sensors in CMOS technology is an auto-
mated batch process where a huge number of chips can be manufactured in paral-
lel, testing is a single chip job with highly specialized (and expensive)
equipment. The plan was to use PEL´s wafer prober and a commercial pattern
generator / logic analyzer to perform the testing.

An exhaustive introduction into testing theory is not given here - there’s a lot of
good literature [11][12][13][14]. But we have to get the basic ideas of controlla-
bility, observability, fault models, scan vector algorithms, and design for test.

8.1.2 FAULT MODELS

A circuit can be defect in many ways. In this first chapter, we restrict ourselves to
digital logic. The analog part of the SMC will be dealt with separately. There’s an
arbitrary number of fault sources for logic as complex as this. So one makes the
assumption that only one fault occurs at one time, and that this fault follows a
simple idea: it is a stuck-at-fault. The corresponding location in our circuit has a
short to either GND or VDD and therefore stays at that level all the time:
stuck-at-0 (sa0) or stuck-at-1 (sa1). No bridges between neighboring lines, no
time-dependent faults, no clustering of faults are taken into account. However,
theoretical considerations show that this model, applied to any point in the logic,
covers almost all of the possible faults.

The good thing about it is that it´s simple. Every point in a circuit belongs to one
of three groups: it is either a primary input, an internal node, or a primary output.
We can easily access primary in- and outputs, but the states of the internal nodes
are basically hidden.

8.1.3 CONTROLLABILITY AND OBSERVABILITY

This is where controllability and observability come in: a node is controllable if
we can force it to be either 0 or 1. For a primary input that’s easy, but for an inter-
nal node it can be quite hard (depending on the logic leading from the primary

8 Testing of VLSI and mixed signal ICs

34

inputs up to this node, it can be necessary to set many primary inputs), or even
impossible. The same is true for observability: the question is if the logic can be
forced into a state where the measurement of the primary outputs allows us to
definitively determine the level of our internal node. This also can be a complex
or impossible job.

As we now know about the stuck-at model and controllability/observability, we
get the idea of our test: first, we assume the circuit to be fault-free. Then, for
every point in our logic, we look for a way (via the primary inputs) to set it to 0
and 1. Then we compute the correct answer of the fault-free circuit to the primary
outputs. This provides us with a set of vectors on the input and a set of corre-
sponding vectors on the output which define the correct logic. If we now apply
these vectors to our circuit under test and compare the circuit´s answer with the
computed vectors, we are able to detect stuck-at faults in the logic as these two
bit patterns will differ. But here we see that controllability and observability
directly affect the fault coverage of our testing: only faults of controllable and
observable nodes will be detected. Furthermore, the number of vectors necessary
for a given fault coverage raises almost exponentially.

Fortunately, a reasonable number of vectors can deliver a fault coverage of > 98%
in many cases. So far, we have only dealt with combinatorial logic. But what
about sequential logic as in memories? As the state of this kind of circuitry
depends not only on the state of the inputs, but also on the history of the logic,
sequential logic is not testable with this kind of setup.

So we see two problems with the setup developed so far: observability and con-
trollability of all nodes either requires a huge number of vectors or is not even
possible at all, especially when there are only few inputs and outputs as is the
case for the SMC, and we are blind to faults in sequential logic.

8.1.4 SCAN CHAIN

This is where the scan chain comes in. It’s an ingenious idea that changes the
whole thing. We can guarantee perfect access to any node, and even sequential
logic becomes testable, although we still may end with a lot of vectors.

The concept is the following: to each flip-flop in the circuit, we add a switch
which toggles the input of the flip-flop from normal operation to test mode. In
this test mode, all flip-flops in the logic are linked together input-output, they
form the scan chain. In addition, their clock inputs are switched to a common test

8.2 The setup

35

clock. Immediately, we have full control over every input and output in the cir-
cuit: we feed a sequential scan vector to the input of the first flip-flop, and operate
the whole scan chain with the common test clock. For each clock cycle, a bit of
the vector gets loaded into the shift register built by the flip-flops. When the scan
chain is “full”, we switch the input multiplexers back to normal operation, go for
one clock cycle, and have the circuit´s answer to the scan vector. In order to get
this answer out of the chip, we toggle the input switches back into scan mode,
and shift bit after bit out of the scan chain.

We are even able to test parts of the circuitry that are not directly under the con-
trol of the scan chain: if we ensure that all registers determining the state of the
chip are indeed controlled by the scan chain, we can set the logic into a state we
want, but then turn the test mode off not only for one but for many clock cycles,
so that some analog or more mysterious digital parts of the chip can go for nor-
mal operation. When we have operated the circuitry for enough cycles in normal
mode, we switch back to test mode and can read out the answer. This is how we
are going to test our sensors without even using the I2C interface.

8.1.5 ALGORITHMS

The next question of course is: where do those vectors come from? Fortunately,
we don’t have to make them by hand. Literature knows several algorithms for
automatic test pattern generation (ATPG), for example the boolean difference
method, or Roth’s D-algorithm [11]. One can also use pseudo-random test pat-
tern generation, which for complex circuits has a higher fault coverage than the
algorithms if only small numbers of vectors are used. As synopsys, our logic syn-
thesis suite, provides us with a rich set of vectors (about 880’000 lines), we won’t
go into these algorithms and instead refer to literature [11].

8.2 THE SETUP

The goal was clear: to provide a tool which is able to decide on wafer level which
SMCs are functioning and which aren’t. We can break up this job into several
parts: wafer handling and electrical contact, supply infrastructure for the test, the
tester itself, and the controlling of it all.

8 Testing of VLSI and mixed signal ICs

36

8.2.1 WAFER HANDLING AND ELECTRICAL CONTACT

PEL already owns a Synatron Summit 12742SP wafer prober (Fig. 8.2). It is able
to handle wafers up to 20 cm which can be stepped through very easily
chip-to-chip once the geometry is entered. The pads on the wafer are contacted

by a probe card. It’s a PCB which holds up to 70 tiny needles withµm precision
(Fig. 8.3). When the probe card is lowered onto the wafer, each of the tips con-
tacts one of the pads. In our specific case, we had to contact 20 pads on the glob-
top version of the SMC (Fig. 8.4). They all lie in one line. From the probe card, a
flat ribbon cable leads to the supply PCB.

Fig. 8.2: PEL’s wafer prober

8.2 The setup

37

Fig. 8.3: The probe card

Fig. 8.4: Probecard lowered onto the SMC

8 Testing of VLSI and mixed signal ICs

38

8.2.2 THE SUPPLY PCB

It’s a small circuit that has connectors for all the signals needed by the test setup
and provides the chip under test with the appropriate supply voltages. In Fig. 8.5
one can see the LP2951, a controllable voltage regulator. It provides the 2.2 V

Fig. 8.5: Schematic of the PCB

8.2 The setup

39

needed for the Vcom input of the SMC. The 74C906 is an Open Drain Buffer.
This has the following reason: SCL and SDA are used as both in- and outputs in
the test setup. In order to allow simultaneous access to those ports, we have to
buffer the output of the test generator as long as there is no valid data applied. In
Fig. 8.6 we see a photograph of the actual PCB.

We use the testers’s probe clamps to contact the plugs on the PCB. The next step
would be to contact directly to the flat ribbon cable connectors that the prober is
using.

Now we have some cables connected to some sockets, but which cables go where
and why?

Fig. 8.6: The supply PCB

8 Testing of VLSI and mixed signal ICs

40

8.2.3 THE TEST VECTORS

To answer this question, we have to take a look at the test vectors generated by
synopsys. The header for the vector file looks like this:

#===
DESIGN NAME: I2C_CYE500
CUSTOMER: Christoph H of PEL
LIBRARY TYPE: cyb
REVISION: 1.00
DATE: 07/23/2000
#===

Clock 1 I # system clock; active rising-edge
XReset 2 I # primary input
SCL 3 IO # bidirectional inout port
SDA 4 IO # bidirectional inout port
SMCAdr[3] 5 I # primary input
SMCAdr[2] 6 I # primary input
SMCAdr[1] 7 I # primary input
SMCAdr[0] 8 I # primary input
Test 9 I # primary input
CapIn 10 I # primary input
CalIn 11 I # primary input
ResIn 12 I # primary input
TempIn 13 I # primary input
Scan_In 14 I # scan_in port
Scan_Out 15 O # scan_out port
Scan_En 16 I # scan_mode_control port

There are 13 inputs, one output and the two combined signals SCL and SDA
mentioned above. Each signal will be briefly described.

Clock is the system clock for the whole SMC. In normal operation, a 800 kHz
square wave signal is applied here and is supplied to the different clock stages on
the chip. There are many clock domains on the chip. When the test input is high,
all these clock domains are connected together by a multiplexer. This way,clock
is supplied to every flip flop in the scan chain.

XReset is the reset input for the SMC. While low, the chip is reset to a defined
state. In normal operation,XReset has to be H.

8.2 The setup

41

SCL is the clock input/output of the I2C interface. It is used as both input and
output for testing.

SDAis the data input/output of the I2C interface. It’s also used in both directions
for testing.

SMCAdr0..3 determine the I2C address of the SMC in normal operation.

Test is one of the two inputs that determine whether the chip is in test mode.
WhenTest is H,Clock becomes the test clock.

CapIn, CalIn, ResIn, TempIn are used in the following way: for the
test, the output of the sensors are assumed to be zero. Otherwise, the result of the
test would depend on the sensor output. In order to force the ATPG into an oper-
ation with all the sensor inputs zero, they are designed as primary inputs but then
forbidden to be anything else but zero. Thus, they are not used in our testing.

ScanIn connects to the input of our first scan chain flip flop and therefore takes
all the input bits to be fed into the chain.

ScanOut is the output of the last flip flop in the scan chain. This is where we
can read our answer.

ScanEn determines if the chip is in normal (L) or test (H) operation.

Next, we have to get an idea how the test vectors look like. Here we have the
beginning (remember, we have more than 880’000 lines) of the test vector file:

#==
DESIGN NAME: I2C_CYE500
CUSTOMER: Christoph H of PEL
LIBRARY TYPE: cyb dw01.sldb dw02.sldb dw03.sldb dw04.sldb
REVISION: 1.00
DATE: 07/23/2000
#===

Synopsys Test Compiler, 1999.10 (Sep 02, 1999) was used to
generate this pattern set
INPUT VECTOR FILE = I2C_CYE500.vdb was the source file for
this pattern set

40.0 ns D N N N N N N N N N N N N N X N
55.0 ns D N X X N N N N N N N N N N X N
105.0 ns D U X X N N N N U D D D D N X N

8 Testing of VLSI and mixed signal ICs

42

Pattern 0
205.0 ns D U X X N N N N U D D D D D X U
240.0 ns U U X X N N N N U D D D D D X U
255.0 ns D U N N N N N N U D D D D D X U
340.0 ns U U N N N N N N U D D D D D X U
355.0 ns D U N N N N N N U D D D D D X U
405.0 ns D U N N N N N N U D D D D U X U
440.0 ns U U N N N N N N U D D D D U X U
455.0 ns D U N N N N N N U D D D D U X U
540.0 ns U U N N N N N N U D D D D U X U
555.0 ns D U N N N N N N U D D D D U X U
605.0 ns D U N N N N N N U D D D D D X U
640.0 ns U U N N N N N N U D D D D D X U

We see 17 columns: the first one is the timing, followed by the 16 in- and outputs
in the same order as above. We can see six different characters in the columns: D
and U are used for inputs: D means down (0) and U means up (1). For output sig-
nals, we have L and H (low (0) and high (1)). N means ‘don’t know’ for inputs, X
is ‘don’t care’ for outputs.

In the first two lines, we see a reset cycle. Then, different bit patterns are applied
to the inputs, and the correspondent outputs can be seen inSCL, SDA and
ScanOut .

So we have the vectors, and we have the connections. Now we need the tester.

8.2.4 THE TESTER

As we don’t have one of the real big machines (Fig. 8.7 and Fig. 8.8), we found a
solution with the Agilent 16702 Logic Analysis System (Fig. 8.9). It features
high-speed digital pattern generation with up to 208 channels, and can simulta-
neously analyze data on as many lines. As it is a full-featured Unix machine run-
ning HP-UX, it offers all advantages of a modern networking OS (redirectable X
Windows frontend, network access, NFS..). Additionally, one can buy an oscillo-
scope card which allows the monitoring of analog data.

The general idea for using this machine for testing is the following: we load our
vectors into the generator and connect all relevant signals to the probe card. The
analyzer is also connected to the appropriate lines. Then we lock the timing of the
analyzer to the generator. If we now run the system, we get an answer line for
each line in the vector file.

8.2 The setup

43

In Fig. 8.10 we see the output pod allocation for our configuration. We use all
bits of pod 5 and 6 bits of pod 4. One may notice that there are three bits we
haven’t mentioned so far: step, sync and read527. Step is used to tell the wafer
prober to step to the next reticle. We pull it down at the end of a testing session to
get the next chip. Sync is used as a one-bit alternating clock for the following rea-

Fig. 8.7: The Teradyne L320 series

Fig. 8.8: The Schlumberger IHS1000

8 Testing of VLSI and mixed signal ICs

44

son: the analyzer has a clock input, and it takes a sample on every (rising, falling
or both) edge of this clock signal. If we look back to the example of our vector
file, we see that the synthesized clock signal doesn’t change after every line.
Quite often it stays low for two lines in order to guarantee a secure transition of
some signal. Thus, we’d lose lines if we took the synthesized clock as the ana-
lyzer clock. So I computed an artificial clock signal which changes after every
line: sync. Read527 is used in tests where we have regions of both scan chain fill-
ing/reading and normal operation. As we set it to 0 during normal operation, we
make sure that we only sample data that is coming from the scan chain.

Fig. 8.9: The Agilent 16702B

8.2 The setup

45

Fig. 8.11 shows the port allocation of the analyzer. We use 5 bits of pod D1. We
also have two additional signals: valid has no specific function and exists only
because we need a corresponding signal in the compare block. It can be used to
monitor any signal of interest. Read527 connects to the generator output of the
same name.

8.2.5 WHAT TO TEST ?

Before we continue with a detailed description of the testing, we have to think
about what we want to test at all. When we recall what we have learned about the

Fig. 8.10: Generator pod assignment

8 Testing of VLSI and mixed signal ICs

46

SMC in the preceding chapters, we see that we have three big parts: the digital
circuitry, the asynchronous counters, and the analog parts, which means the sen-
sors themselves.

8.2.6 DIGITAL PART

We have learned that whole digital part can be covered with the synthesized vec-
tors, excluding the asynchronous counters. From the synthesized synopsys vec-
tors, we know what the chip is supposed to answer to each line. Now the built-in
compare function of the 16702 can be used which takes the input from the ana-
lyzer and compares it in a user-defined way with some preloaded reference file. If
we then filter out the lines that differ, it can be seen if the digital part has errors.

In Fig. 8.12 all relevant parts can be seen: the generator, the analyzer, the com-
pare tool, a filter and the file out tool. The generator and the analyzer are timing
locked with what is called a group run in 16702’s terminology.

Fig. 8.11: Analyzer pod assignment

8.2 The setup

47

The generator is started as soon as it receives a signal from the wafer prober. For
this purpose, we have a small Labview program on the computer which is con-
trolling the prober. It waits for the step signal of the generator, steps the prober to
the next reticle, and then pulls down a ‘ready’ line which signals the generator to
start.

In Fig. 8.13 we see the beginning of the generator sequence. The Signal IMB
event in line 5 tells the analyzer to become ready for input. The Wait Until in line
7 stops until the prober signals ‘ready’. The analyzer is armed by the IMB signal,
and is set to trigger on each edge of the sync signal (Fig. 8.14). We have to put it
into state mode as the timing mode will sample with an internal clock. The output
of the analyzer then goes to the compare tool. This is configured in a way to com-
pare SCL, SDA and ScanOut in each line to the corresponding values in the refer-
ence file (Fig. 8.15). Additionally, we tell it to display only those lines which
have a difference in any of these three bits. So now we have all lines which could
be proof of a potential fault in our circuit. But remember all those Xs in our vec-
tor file? For most of the lines, synopsys doesn’t care what the correct answer is.
So we have to filter in a second step for only those lines with a valid test. This is
what we need the valid flag for. The filter tool (Fig. 8.16) passes only those lines
which have valid set to 1. Thus, at the input of the file out tool, we have only

Fig. 8.12: The testing configuration

8 Testing of VLSI and mixed signal ICs

48

those lines left which differ in at least one bit from the reference and are marked
as actual test lines in the vector file. They are written to disk by the file out tool.

But how do those files make it into the generator and compare tool, and who sets
the valid bit accordingly? Note that we have D, U, N, L, H and X in our synopsys
file, but only 0 and 1 in the files the 16702 is reading. The work is done by a Perl
script that translates the synthesized vector files into two output files: one for the
generator and one for the compare tool. The program (Appendix 1) first gener-
ates the headers for the output ASCII files, then takes each line of the input file,
splits it up into the parts for the generator and the compare, translates the charac-
ters, and writes the output into two files. Additionally, it helps us to overcome a
limitation of our current generator card: as it is a demo device, we have only
memory for 256k lines. So we have to split our 880’000+ lines into several parts.
Of course we cannot do this at an arbitrary position. So the program looks for a
reset cycle in the file and uses it to begin a new set of output files. Note that this is
not necessary in the final version of the testing as the new generator card will

Fig. 8.13: The generator sequence

8.2 The setup

49

Fig. 8.14: Analyzer timing settings

Fig. 8.15: The compare tool

8 Testing of VLSI and mixed signal ICs

50

have 16M lines. Note that in that case you cannot use the ASCII file directly for
the generator. Larger files have to be converted to a specific binary format. There
is a C program to do that: asc2pgb.

Our translation program is invoked with the synopsys file and the name of the
output as parameters. It then numbers the output files sequentially. Those files are
then ftp’d to the generator and loaded into the compare tool and the generator. It
is convenient to create a system setting save file for each output file so that testing
can be automated.

In the end, if this system setting is executed, it yields an empty file if the test of
the digital part went ok and a list of all failing lines if there were faults.

8.2.7 THE ASYNCHRONOUS COUNTERS

We have learned that asynchronous counters a not testable with the scan chain
method. But why? An asynchronous counter (see Fig. 8.17) consists of a row of

Fig. 8.16: The filter tool

Fig. 8.17: Asynchronous counter

D Q

Q

D Q

Q

D Q

Q

8.2 The setup

51

flip flops, wired in the way shown below. As such, it forms sort of a scan chain
itself. Thus, we have to find other ways for testing it. But as there’s no general
solution for this problem, we have to take a look at our circuit (Fig. 8.18).

We see that the gate time counter is clocked by ClkDiv, that is the system clock
divided by 256. The clock input of the value counter is connected to the bitstream
output of the sensor. All outputs from the asynchronous counters are synchro-
nized. This way, uncontrollable signals coming from the counters can not reduce
the testability of the rest of the circuitry. The small black circles mark flip flops
that are in the scan chain. The gate time is normally set via the I2C interface, but
is also accessible in the scan chain. So we might come up with the following idea
for the testing of the gate time counter: using the scan chain, we set the gate time
to the maximum value, 111. Then we switch to normal operation and run the sys-
tem for as many cycles as are necessary for this gate time (524288 clock ticks).
Then we have to check the output at Reset and Load. If they toggle after the exact
number of cycles, we know that the counter has counted right. Unfortunately, it’s
not that easy in practice: remember that we have the clock divider at the input. So
we’d have to wait not 524288 but 524288 * 256 or 1.34E8 clocks. Even the big
generator with 16M vectors is way too small for that. The only useful alternative
I see would be to use an external clock for that part and use an additional counter
which triggers the analyzer after the appropriate number of cycles. However, I
haven’t tried that so far.

Fig. 8.18: The asynchronous counters on the SMC

async.
value
counter

async.
gate time
counter

R
eg

is
te

r

Load

Reset

Decoder

SensOut

ClkDiv

Gate time

8 Testing of VLSI and mixed signal ICs

52

For the value counter, it’s even more difficult as it is clocked by the sensor output
to which access is not possible at the moment without changing the design. In my
opinion the only possibility to test this counter is to combine it with the test of the
sensors: if they deliver useful values all over the parameter space, we have to
assume that the counter is working ok.

If these asynchronous counters should show to be a problem, they could be
replaced by synchronous counters in a future design. They could be fully inte-
grated into the scan chain and were therefore very easily testable. They do have a
drawback though: they need about 20% more chip space.

8.2.8 THE SENSORS

Before we begin with the test of the sensors, we perform one additional test, just
to be on the safe side. We take two vectors of 527 0s or 1s, respectively, and clock
them into the scan chain. Without performing the usual cycle(s) of normal opera-
tion, we immediately clock them out again. In this way we see if the scan chain is
working all right. If both vectors don’t have any bits toggled, the scan chain is
fault free.

Now that we can rely on a working scan chain, which possibilities do we have to
test the analog part of the SMC and the sensors? Most of the usual testing
schemes for analog circuitry fail for one simple reason: we do not have the pins.
As the SMC has only digital in- and outputs, we cannot feed in voltages, measure
current consumptions, look at signals with an oscilloscope and the like. Instead,
we have to find a way to test the hidden (behind the digital part) analog sensor
circuitry solely by using the digital interface. This confinement almost inevitably
leads us to a functional test. This means we can’t measure the correctness of sin-
gle parts of circuitry, we only can do dummy measurements and use their results
to deduce that a sensor is ok. As these restrictions were already foreseen at the
time of design, fortunately there are some features incorporated into the design
that allow us to do cross and backup tests. Recalling Fig. 1.3, we see the follow-
ing:

• the temperature sensor can be read out in two ways (via the calorimetric
or the capacitive filter bank)

• the output voltage of the calorimetric sensor can be connected to theΣ∆
A/D converter of the capacitive sensor

8.2 The setup

53

• the calorimetric sensor has an integrated heater which can be used to sim-
ulate a measurement

• for all sensors, we can play with the different options in the respective
ComRegs and watch the output for changes.

But how can we control all those features? The easiest way is again the scan
chain. In Appendix 6 we see a complete list of all 527 bits. As the parameter reg-
isters of the sensors are included in the chain, we can just generate a vector with
the desired attributes, clock it into the scan chain, operate the SMC in normal
mode for some time and then use the sensor output registers to read out the sen-
sor values. Now it’s a rather boring job to set the right bits by hand every time.
For that reason I wrote a bunch of PHP (an HTML-embedded server-side pro-
gramming language) programs (Appendix 2) that provide a nice web interface to
all sensor parameters (Fig. 8.19). When the desired values are entered, a click on
the generate button compiles the corresponding sequence of 527 0s and 1s. Note
that it is not enough to set just the right parameter bits. In order to get the SMC
logic into a well-defined state, we have to turn on other bits in the scan chain (e.g.
the sensor-power bits). To get this stream into the generator, there’s another Perl
script (well, actually there’s two) that generates the according ASCII file
(Appendix 3). The first one, xform527.1wait, takes one sequence, clocks it in,
operates the chip in normal mode for one cycle, and reads out the answer. The
second one, xform527.progwait, is an extended version. When we have a couple
of vectors which we want to test in one run and which require different numbers
of wait cycles, we can use xform527.progwait which will read in a list of input
files (e.g. vec1, vec2, vec3...), each containing one vector and an integer that
denotes the number of cycles to run in normal mode. In both cases, the output is
written to a text file.

8.2.9 THE CAPACITIVE SENSOR

We start with the capacitive sensor as it is the most simple one to test. If we again
have a look at Chapter 2.2, the register bank, we see the possibilities we have for
testing: if we have a nonzero output at all (which we hope), we can use ComReg
3 (the gate time), ComReg 4 (the reference capacity) and bits 0 and 1 of
ComReg5 (bitstream multiplier) to influence the output. We might expect the fol-

8 Testing of VLSI and mixed signal ICs

54

Fig. 8.19: Web based scan vector generation

8.2 The setup

55

lowing behavior: Fig. 8.20. The output should depend on the gate time in the fol-
lowing way:

where x (0..7) is the gate time value set in the register.

So, using the PHP scripts mentioned above we generate a series of vectors with
increasing gate times and feed them to the SMC.

For the reference capacitance, the dependence is expected to be linear, so an
ASCII file with a sweep through different values is generated.

Finally, we step through the bitstream multipliers 1, 2, 3 and 4 in the file and hope
to see also a linear answer.

Let’s take a look at testing time. We assume that the time for clocking the vectors
in and out of the scan chain is negligible compared to the testing time, so we do
not include it into our estimation. In order to reduce testing time, we might want
to test the reference capacitances and the bitstream multiplier with minimal gate
time. Then we have 68 (64 for cap., 4 for multiplier) times 4096 (shortest gate
time) clock cycles for testing, or about 280 milliseconds. If we want to test the
different gate times, we have to wait longer though. As the longest gate time is
about 0.5 seconds, we should perhaps not test all of them in order to avoid testing
times in the multi-seconds range.

Fig. 8.20: Testing schemes for the capacitive sensor

T
256 16 2

x⋅ ⋅
f Clk

-----------------------------=

Output

Gate time Bitstream
multiplier

Reference
capacity

Output Output

8 Testing of VLSI and mixed signal ICs

56

The output of the capacitive sensor can be processed and verified with the read-
out script described in Chapter 8.4, for example.

8.2.10 THE CALORIMETRIC SENSOR

Remember that we have extended analog and digital data processing between the
thermopiles and the A/D converter (Chapter 2.3.2 and Chapter 3.1.2). The overall
impact of those two filter stages on the sensor signal can be described as a low-
pass filter with a maximum signal frequency of about 400 Hz. We can again play
with the sensor parameters, but we also want to know if the filters are working.
We can use some basic idea of signal processing to come up with a testing
scheme: a step function on the input should be modified by the filter in the fol-
lowing way: Fig. 8.21. So we turn on the heater, and in the following several mil-

liseconds read out a lot of values in order to make sure that the output looks
something like the right shape in Fig. 8.21. We basically have two options to do
so: we can use a long list of read-out vectors in the generator, or we delay that
test and use the PC and theµC together with theread continuouscommand after
the 16702 has done its job. Once we know that the filter is basically working, we
can think of ways of influencing the output in order to see if the rest of the sensor
is working: we can use bit 1 and 2 of ComReg3 to divide the output by 4 or 16
which should manifest in the output values. By heating not the sensor, but the ref-
erence capacitor via bit 3, the output can be inverted. Bit 4 and 5 allow us to set
the heater current to two values. Again we should see the impact in the output
values.

Fig. 8.21: Shape of the calorimetric signal at different points of the filter chain

Time

Heater
power

Thermo-
couple
output

Filter
output

TimeTime

8.2 The setup

57

Testing time is not so much an issue for the calorimetric sensor as we can get a
value every 1024 clock cycles, or about every millisecond. So even if we test
some parameters, we are still deep in the millisecond range.

Additionally, it is possible to route the output of the analog filter stage of the cal-
orimetric sensor to the input of the A/D converter of the capacitive sensor (Bit 2
and 3 of ComReg5). In this way, we have two possibilities to test the analog part
of the calorimetric and the A/D converter of the capacitive sensor. In this setup,
we scan through different gate times between 0 and several milliseconds and
check the output of the capacitive sensor for the integral over time of the right
curve in Fig. 8.21, which looks almost the same. In this case, the testing time
considerations of the preceding sensor are valid of course.

8.2.11 THE RESONANT SENSOR

The resonant sensor causes the biggest testing problems. As we have seen in
Chapter 3.1.3, the feedback circuit should do its job alone. This is fine for normal
operation, but it also severely restricts our testing possibilities. In the present
design, about the only thing we can do is the following. We set up vectors for all
the combinations of delay times (0, 200, 400, 600 ns, bit 0, 1 and 2 of ComReg3),
delay currents (1, 2, 3, 4 with bits 3 and 4) and the half (bit 5) and double (bit 6)
current. This gives us a 4-dimensional parameter space. For each point of this
space, we read out the sensor several times and try to find a stable island where
the sensor seems to be vibrating in resonance. Fig. 8.22 gives the idea.

Fig. 8.22: Parameter space of the resonant sensor

stable
region

unstable
region

Parameter space

8 Testing of VLSI and mixed signal ICs

58

The vast parameter space is bad news for testing time, of course. 4 delays x 4 cur-
rent settings x 2 (double/divide current) x 50 (a reasonable number to guarantee
reproducibility) yields 1600 test points. Even with the shortest gate time (4095
clocks), we end up with about 6.5 seconds.

Please refer to Chapter 8.5 for suggestions about how to improve the testing
capabilities of the resonant sensor in a future design.

8.2.12 THE TEMPERATURE SENSOR

The temperature sensor can be read out in two ways: using the counter of the
capacitive sensor (Bit 4 ComReg5) or via the filter chain of the calorimetric sen-
sor (Bit 0 ComReg3). Our wafer prober has the nice feature that the temperature
of the chuck the wafer is lying on can be controlled. Thus we can check the tem-
perature sensor itself, the counter of the capacitive sensor and the digital filter of
the calorimetric sensor. The last test of course implies that we are able to heat up
fast enough to see the frequency response of the filter, which might be not possi-
ble. Otherwise, we can expect a linear temperature dependence of both output
signals.

As the temperature sensor relies on the two other signal paths, the considerations
made above apply here for testing time.

8.3 SUMMARY

To sum up the preceding chapters, we provide a schematic flow diagram that
quickly tells you which script is used where etc.: Fig. 8.23

8.4 RESULTS

After the PCB was built and all the cables were wired correctly, the setup was
ready for the first test. A Perl program allows us to control the testing process
from a Unix machine. It uses the RPI (remote programming interface) of the
16702 to communicate via Unix network sockets. The script can be found in
Appendix 5, the documentation of the RPI is at [16].

When testing of the first wafer was tried, a short circuit occurred. The current
limiter avoided damage to the wafer, but testing was impossible. One of the vdd
pads on the wafer wasn’t connected to the digital or analog circuitry, but instead

8.4 Results

59

contacted to the n-well of the whole wafer. This is necessary for the resonant sen-
sor to work. But in our case, the wafer was not entirely etched, so the positive
n-well and the grounded substrate built a nice diode over the whole wafer area.
The obvious solution to this problem - to disconnect the n-well from vdd, for
some reason didn’t work. As a consequence, wafer tests had to be skipped for the
beginning and single chips had to be tested while waiting for the second wafer
run to be etched.

A later inspection revealed that the waver can be used if the supply voltage is
increased slowly instead of turning it on abruptly.

The first digital test was performed with some 54’000 lines. The evaluation of the
test is very easy: if the output file is empty, no error occurred. Unfortunately,
about 130 of the 54’000+ lines failed. We might propose a possible explanation:
the synopsys tool assumes the outputs of the sensors to be zero during digital test.
In the current design, this is not ensured. We will see in the second run, where
additional multiplexers ground the sensor outputs during digital test, if our idea
was right. Other digital tests with longer vectors files showed even higher per-

Fig. 8.23: Testing overview

Digital
part

Async.
counters

Sensors

Vectors
(synopsys)

527
0s or 1s

Web
interface

16702

xform.pl

xform.progwait.pl

xform.progwait.pl

count
lines

countbits.pl readout.pl
or other tool

8 Testing of VLSI and mixed signal ICs

60

centages of failing vectors. Several chips showed the same failing vectors, so we
at least have reproducibility.

We discussed the theory of testing the asynchronous counters in Chapter 8.2.7.
As we have seen there, our equipment is not able to handle the large amount of
clock cycles necessary to test the gate time counter. We will talk about a possible
future solution to this problem in the next paragraph. For the time being, we have
to rely on the sensor testing.

The basic scan chain tests with 527 0s or 1s was working. The script countbits
(Appendix 4) counts all the bits in the chain. If it’s not 0 or 527, we’re in trou-
ble...

As it is not very convenient to parse the output of the sensor test by hand, a Perl
script was used that reads in the output file, extracts chunks of 527 bits with valid
sensor data, calculates the numeric sensor value for all sensors, and invokes gnu-
plot to provide a graphical output of the sensor values. The script can be found in
Appendix 4 and a sample output is shown in Fig. 8.24.

Fig. 8.24: Sample output of the readout script

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

1 2 3 4 5 6
3000

4000

5000

6000

7000

8000

9000

ca
p

+
re

s
[in

t]

ca
l [

in
t]

measurement #

cap
cal
res

8.5 Future improvements

61

8.5 FUTURE IMPROVEMENTS

We have seen that above all, there are two critical steps in the testing process: the
asynchronous counters require too many lines, and the resonant sensor is not test-
able by design. Therefore I propose two possible design changes for future runs.

8.5.1 ASYNCHRONOUS COUNTERS

The first idea to reduce the number of generator lines needed for testing is the
implementation of a flip flop that allows to bypass the clock divider at the input
of the gate time counter. This reduces the number of lines by a factor of 256,
leaving only 524288 lines left. Our generator can handle that, and it’s then only a
question of testing time. As the ability to run in normal mode independently of
the generator would be useful for other testing tasks too, we might also propose
an external counter and clock generator. The generator clocks in the scan chain,
tells the counter how many cycles to go, turns off theScanEn, and triggers the
counter. It then waits for anotherWait_Until event from the counter. The counter
uses the external clock to run the SMC in normal for the specified time and then
signals the generator to go on with reading out the answer. Fig. 8.25 gives the
idea. No external counter would be needed if the generator was able to loop for a

Fig. 8.25: Flowchart of the testing setup with an external counter

Clock in scan chain
with counter set to max.

Go for n cycles in normal
operation, then trigger analyzer

Check counter output for
transition

Test=1, ScanEn=1

Test=0, ScanEn=0
Load counter

8 Testing of VLSI and mixed signal ICs

62

certain number of times. The 16702 does have a loop function, but it is expanded
before running and therefore also causes the memory problem.

8.5.2 THE RESONANT SENSOR

The problem with the resonant sensor is that there is no means to test the delay
line. My first idea was to connect the delay line to the gate time counter and the
system clock to the value counter. Then we insert a bit into the delay line and
simultaneously reset the two counters. The value counter then counts the clock
cycles until the delayed bit out of the delay line triggers the gate time counter and
resets the value counter. In this way, we would be able to measure the delay time
in multiples of clock cycles. Unfortunately, the delay is about 1.4µs, and the
clock is 1.25µs. Thus, there’s no way in realizing this idea without overclocking
the SMC considerably.

Fortunately, there is another idea that is very probable to work out. If we connect
the output of the delay line to its input via an inverter, we get a system with posi-
tive feedback that is supposed to oscillate. We can directly use the existing
counter setup to measure the frequency and use it to deduce the delay time.

If the delay line works, the rest of the analog circuitry can be verified by using the
heater to generate the pulse. In this way, we can test the whole chain from heater
to counter.

8.5.3 OTHER IDEAS

While we’re at it, we may propose another small design change that allows us to
test the calorimetric sensor more thoroughly. We have seen that the chopper fre-
quency is created by an oscillator on-chip. By the standard testing scheme devel-
oped above, we can tell if the chopper is working or not. However, we cannot
make any statement about the chopping frequency. Therefore, we might just add
another multiplexer that connects the output of the oscillator to the counter of the
capacitive sensor, and the frequency can be determined.

9.1 Description and results

63

9 GAS MEASUREMENTS

9.1 DESCRIPTION AND RESULTS

After all the discussions in the preceding chapters, we should not forget that the
SMC is a gas sensor. Therefore gas measurements are interesting. Of course it’s
not convenient to use the tester to read out the sensor values in a gas measure-
ment as that takes several hours. In Chapter 2, we discussed the I2C interface and
also mentioned someµC and PC software that allows us to set the registers and
read out the sensors over a long period of time. So all we need is some supply
infrastructure for the SMC. A PCB was designed that holds the SMC in a DIL48

Fig. 9.1: Schematic of the supply PCB

9 Gas measurements

64

package into which it is wire bonded. The schematic of the board (Fig. 9.1) con-
tains the following main parts:

• the DIP switch in the upper left allows for control of some settings like
I2C address or test mode

• the oscillator in the lower left provides a quartz-stabilized 800 kHz square
wave as the main clock for the SMC

• in the lower right, we recognize the LP2951, the programmable voltage
regulator that provides 2.2 V for Vcom

• in the centre, there is the DIL package of the SMC with all the connectors
that allow for access to signals for testing purposes.

9.1 Description and results

65

The bonding diagram for the SMC can be seen in Fig. 9.2. The resulting pinout

of the DIL48 package is shown in Tab. 9.1.

For the actual gas measurement, only few connections to the board are necessary:
5 V power of course, but then only SDA and SCL, the data and clock lines for the
I2C bus. A photograph of the PCB connected to theµC can be found in Fig. 9.3.

Fig. 9.2: Bonding diagram for the globtop version of the SMC

9 Gas measurements

66

When the PCB and the PC are connected to theµC, we are ready for gas mea-
surements. PEL has a computer controlled measurement table that allows to mix
several analytes [15] in exact proportions into a carrier gas and expose the sensor
to that mixture (Fig. 9.4). A Labview program is used to step through a series of
several analytes in different concentrations. Exhaustive measurements are

Tab. 9.1: Pinout of the SMC in a DIL 48 package

Pin Signal Signal Pin

1 ScanOut ScanIn 48

2 SelExt Test 47

3 IBiasExt ScanEn 46

4 vdd n-well 45

5 gnd 44

6 Addr3 43

7 Addr2 CalPDM 42

8 Addr1 AAout- 41

9 Addr0 AAout+ 40

10 vdd SelCal 39

11 Heater 38

12 Chopp- 37

13 SCL Chopp+ 36

14 SDA 35

15 Clk 34

16 Reset 33

17 Vcom 32

18 gnd 31

19 CapOut 30

20 ResOut 29

21 VRefCap IBias 28

22 OPITop VRefCal 27

23 26

24 25

9.1 Description and results

67

beyond the scope of this thesis, but several publications are available from PEL
that cover all aspects of the different sensors [6],[7],[8]. Due to design problems
of the of the current version of the SMC (for the capacitive and the resonant sen-
sor, the output value in the DataOut register is immediately overwritten by zeros),
I could only read out the calorimetric sensor. Therefore for my gas measurements
I used an older design that already has the same capacitive sensor and I2C inter-
face as the SMC.

We set up a measurement with four different analytes (water vapor, ethanol,
n-octane and toluene) where for each analyte we first increase the concentration
in four steps and afterwards decrease it again in the same four steps. This is a typ-
ical measurement scheme used at PEL and yields results as shown in Fig. 9.5.
The sensor was coated with the PEUT polymer. The measurement ran four about
6.5 hours. Each concentration is applied for 5 minutes and is then followed by
five minutes of purging with carrier gas (synthetic air). The four organ shaped
patterns can easily be recognized. Even without a detailed data analysis, we can
note several things:

Fig. 9.3: TheµC board and the PCB ready for gas measurement

9 Gas measurements

68

• the signal to noise ratio, that is the height of the ‘pipes’ compared to the
superimposed noise, looks very promising

• the baseline which is measured for the carrier gas is very flat. There is a
linear decrease, most probably due to some temperature effects, that can
be compensated.

• the different analytes can be distinguished not only by the height of the
signal (which of course is useless as long as the concentration is not
known), but also by the sign of the deviation from the baseline

• the spikes on the bars for the first analyte (water vapor) are believed to be
caused by some problem of the gas measurement table as we were able to
confirm them by other sensors.

Fig. 9.4: PEL’s gas measurement table

9.1 Description and results

69

As the other sensors have been tested in separate designs before, we might be
quite confident that the handheld prototype will be working well once the design
problems are resolved.

Fig. 9.5: A gas measurement performed with the capacitive sensor of the
SMC

264000

265000

266000

267000

268000

269000

270000

271000

272000

0 5000 10000 15000 20000 25000

S
en

so
r

va
lu

e
[c

ou
nt

er
 ti

cs
]

Time [s]

gas measurement
baseline

9 Gas measurements

70

ACKNOWLEDGEMENTS

I would like to thank the entire PEL team for their kind support. It is a pleasure to
work there and I’d be glad to return to do my Ph.D. Special thanks go to Chris-
toph Hagleitner who helped me solve all the problems I encountered during my
work and Martin Zimmermann for his patient support in all questions concerning
electronics.

71

REFERENCES

[1] Philips Semiconductors, PCF8584 IC-bus controller datasheet,
http://www-us6.semiconductors.com/pip/pcf8584p#datasheet

[2] Michael Morent, Digitales Interface fuer chemische Mikrosensoren,
Diploma Thesis 1999, PEL, ETH Zuerich

[3] Rudy van de Plassche, Integrated Analog-to-digital and Digital-to-analog
converters, Kluwer Academic Publishers

[4] Christian Menolfi, Qiuting Huang, A Low Noise CMOS Instrumentation
Amplifier for Thermoelectric Infrared Detectors, Technical Report No.
97/8, IIS, ETH Zurich

[5] Shoji Kawahito et al., Delta-Sigma Modulation Sensor Interface Circuits
with Improved Conversion Gain for Capacitive Readout Chemical Sen-
sors, T.IEE Japan, Vol. 119-E, No. 3, ‘99

[6] Adrian Kummer, Charakterisierung kapazitiver chemischer Mikrosensor-
ren, Diploma Thesis 1999, PEL, ETH Zurich

[7] Nicole Kerness et al., N-well based CMOS Calorimetric Chemical Sen-
sors, Proceedings of MEMS 2000

[8] Dirk Lange et al., CMOS Resonant Beam Gas Sensing System with
On-Chip Self Excitation, Proceedings of MEMS 2001

[9] Flavio Heer, A Sigma Delta Temperature Sensor in CMOS technology,
Diploma Thesis 2001, PEL, ETH Zurich

[10] Sengupta und Kundu, Intel Technology Journal 1/99 Defect Base Test,
http://intel.com/technology/itj/q11999/articles/art_6.htm)

 References

72

[11] Stanley L. Hurst, VLSI Testing, IEE Circuits, Devices and Systems Series
9

[12] Alfred L. Crouch, Design for Test, Prentice Hall

[13] Mark Burns, Gordon W. Roberts, An Introduction to Mixed-Signal IC Test
and Measurement, Oxford University Press

[14] N. Felber, VLSI Design and Testing, Lecture Notes, ETH Zuerich

[15] Andreas Koll, CMOS Capacitive Chemical Microsystems for Volatile
Organic Compounds, Ph.D. Thesis, PEL, ETH Zurich

[16] Agilent Technologies, RPI Documentation,
http://software.cos.agilent.com/Svyhlp21/helpRemCntl/ProCom.html

[17] Larry Wall, Tom Christiansen, Jon Orwant, Programming PERL, O’Reilly

73

LIST OF FIGURES

Photograph of the SMC, flipchip version 6
Photograph of the SMC, globtop version 7
Schematic overview for the SMC 8
Signal handler and irq initialization of serial port 10
Digital part of capacitive and resonant sensor 16
Digital part of calorimetric sensor 17
Frequency characteristics of the two filters 17
Schematic of the 1st integrator of the SD A/D converter 20
Analog part of the calorimetric sensor 20
Feedback loop of the resonant sensor 21
Schematic of the delay line 22
Changes in polymer due to analyte 23
Schematic of the SD converter, different capacitors 24
Schematic drawing of the calorimetric sensor 26
Typical measurement graph of the calorimetric sensor 26
Schematic drawing of the resonant sensor 27
Temperature dependence of the base-emitter-voltage of a bipolar transistor 29
Basic idea for the temperature sensor 30
Testing cost will soon exceed production cost 32
PEL’s wafer prober 36
The probe card 37
Probecard lowered onto the SMC 37
Schematic of the PCB 38
The supply PCB 39
The Teradyne L320 series 43
The Schlumberger IHS1000 43
The Agilent 16702B 44
Generator pod assignment 45
Analyzer pod assignment 46
The testing configuration 47
The generator sequence 48
Analyzer timing settings 49
The compare tool 49
The filter tool 50
Asynchronous counter 50
The asynchronous counters on the SMC 51
Web based scan vector generation 54
Testing schemes for the capacitive sensor 55
Shape of the calorimetric signal at different points of the filter chain 56

 List of Figures

74

Parameter space of the resonant sensor 57
Testing overview 59
Sample output of the readout script 60
Flowchart of the testing setup with an external counter 61
Schematic of the supply PCB 63
Bonding diagram for the globtop version of the SMC 65
The mC board and the PCB ready for gas measurement 67
PEL’s gas measurement table 68
A gas measurement performed with the capacitive sensor of the SMC 69

75

APPENDIX 1

XFORM .PL

#!/bin/perl -w

use strict;

my ($i, $outfile, $infile, @vect, $f, $flag);
my ($sda, $scl, $clk);
my ($sdaref, $sclref, $scanoutref, $valid);

$f = 1;
$flag = 0;
$clk = 1;

$infile = $ARGV[0] || die “Please invoke with xform <infile> <outfile>!\n”;
$outfile = $ARGV[1] || die “Please invoke with xform <infile> <outfile>!\n”;

open (HEAD, “HEAD”) || die “could not read header\n”;
open (HEADref, “HEADref”) || die “could not read header\n”;
open (VECT, “$infile”) || die “could not open input file\n”;
open (OUT, “>$outfile”.$f) || die “could not create output file\n”;
open (OUTref, “>$outfile”.”ref”.$f++) || die “could not create reference
file\n”;

while (<HEAD>) {print OUT;}#print ASCII file header
while (<HEADref>) {print OUTref;}#print ASCII reference file header

while ($i = <VECT>) { #for each line
if (!($i =~ m/^[#\s]/)) {#discard line if it starts with # or is empty

$i =~ s/.*\s{3,6}//; #get rid of the timing

@vect = split(“ “, $i);
$scl = $sclref = $vect[2]; #extract SCL
$sda = $sdaref = $vect[3]; #.
$scanoutref = $vect[14]; #.

$scl =~ tr/XNDULH/000111/; #translate chars
$sda =~ tr/XNDULH/000111/;
$sclref =~ tr/XNDULH/000101/;
$sdaref =~ tr/XNDULH/000101/;

if ($scanoutref eq “X”) {$valid=”0”} else {$valid=”1”}#scanout is only
valid if != X

$scanoutref =~ tr/XLH/001/; #translate them

 Appendix 1

76

$i =~ s/[LD]/0/g; #make D and L to 0
$i =~ s/[HU]/1/g; #make U and H to 1
$i =~ s/[NX]/0/g; #make D and L to 0
@vect = split(“ “, $i);

if ($vect[1] eq “0” && $flag) {#if we encounter a reset cycle, go to a
new file: overcome the 256k line restriction of the generator

print OUT “ 0 0 0 0 0 0 0 0 0 0 0 0 “.(($clk = !$clk)?1:0).”\n”; #print
a 0 on STEP to trigger the waver prober

print OUTref “0 0 0 0\n”;
close (OUT);
close (OUTref);
close (HEAD);
close (HEADref);
open (HEAD, “HEAD”) || die “could not read header\n”;
open (HEADref, “HEADref”) || die “could not read header\n”;
open (OUT, “>$outfile”.$f) || die “could not create output file\n”;
open (OUTref, “>$outfile”.”ref”.$f++) || die “could not create refer-

ence file\n”;
while (<HEAD>) {print OUT;} #print ASCII file header
while (<HEADref>) {print OUTref;} #print ASCII reference

file header
$flag = 0;

} else {if ($vect[1] eq “1”) {$flag = 1;}}

print OUTref join(“ “, $sclref, $sdaref, $scanoutref, $valid).”\n”;
#print result to reference file

print OUT join(“ “, $vect[0], $vect[1], $vect[2], $vect[3], $vect[4],
$vect[5], $vect[6], $vect[7], $vect[8], $vect[13], $vect[15]).” 1 “.(($clk =
!$clk)?1:0).”\n”;#print result to file

} #if
} #VECT

print OUT “0 0 0 0 0 0 0 0 0 0 0 0 “.(($clk = !$clk)?1:0).”\n”;#prin t a 0 on
STEP to trigger the waver prober
print OUTref “0 0 0 0\n”;

print “File $outfile generated. Goodbye\n”;
close (VECT);
close (HEAD);
close (HEADref);
close (OUT);
close (OUTref);

77

APPENDIX 2

WEB BASED SCAN CHAIN GENERATOR

===
index.php3 shows a table of all options which the user can choose from
===

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN” “ht-
tp://www.w3.org/TR/REC-html40/loose.dtd”>
<HTML>
 <HEAD>
 <TITLE>ScanChain</TITLE>
<link rel=stylesheet type=”text/css” href=”wwn.css”>
 </HEAD>

 <BODY LINK=”#000000” VLINK=”#808080”>

<Center>
 <FORM ACTION=”generate.php3”>
 <TABLE BORDER=1 CELLSPACING=”2” CELLPADDING=”2”>

 <TR><TH>Capacitive Sensor</TH><TH>value</TH></TR>
 <TR><TD>power on delay</TD><TD>
 <?PHP

for ($i=0; $i<16; $i++) {
$time=256*pow(2,$i)/800000;
echo “<INPUT TYPE=radio NAME=poncap VALUE=$i SIZE=0> ”.$time.”

s
”;
}

 ?>
 </TD></TR>

 <TR><TD>sample delay</TD><TD>
 <?PHP
 for ($i=0; $i<16; $i++) {
 $time=256*pow(2,$i)/800000;

echo “<INPUT TYPE=radio NAME=sdcap VALUE=$i
SIZE=0> ”.$time.” s
”;
 }
 ?>
 </TD></TR>

 <TR><TD>gate time dec. counter</TD><TD>
 <?PHP
 for ($i=0; $i<8; $i++) {
 $time=256*16*pow(2,$i)*0.00000125;

echo “<INPUT TYPE=radio NAME=gtcap VALUE=$i
SIZE=0> ”.$time.” s
”;

 Appendix 2

78

 }
 ?>
 </TD></TR>

 <TR><TD>compensation capacitance (0..63)</TD><TD>
 <INPUT TYPE=text NAME=compcap SIZE=8>
 </TD></TR>

 <TR><TD>sigma delta reduction factor (0..3)</TD><TD>
 <INPUT TYPE=text NAME=sigdelcap SIZE=8>
 </TD></TR>

 <TR><TD>EnCapFB (1 for cap!)</TD><TD>
 <INPUT TYPE=checkbox NAME=ecfbcap SIZE=0>
 </TD></TR>

 <TR><TD>EnCap (1 for cap!)</TD><TD>
 <INPUT TYPE=checkbox NAME=eccap SIZE=0>
 </TD></TR>

 <TR><TD>Sensor (1 for temp!)</TD><TD>
 <INPUT TYPE=checkbox NAME=tempcap SIZE=0>
 </TD></TR>

 <TR><TD></TR></TD>

 <TR><TH>Calorimetric Sensor</TH><TH>value</TH></TR>
 <TR><TD>power on delay</TD><TD>
 <?PHP

for ($i=0; $i<16; $i++) {
$time=256*pow(2,$i)/800000;
echo “<INPUT TYPE=radio NAME=poncal VALUE=$i SIZE=0> ”.$time.”

s
”;
}

 ?>
 </TD></TR>

 <TR><TD>sample delay</TD><TD>
 <?PHP
 for ($i=0; $i<16; $i++) {
 $time=256*pow(2,$i)/800000;

echo “<INPUT TYPE=radio NAME=sdcal VALUE=$i
SIZE=0> ”.$time.” s
”;
 }
 ?>
 </TD></TR>

 <TR><TD>Sensor (1 for temp!)</TD><TD>
 <INPUT TYPE=checkbox NAME=tempcal SIZE=0>
 </TD></TR>

 <TR><TD>divide gain by 4 (BP)</TD><TD>

79

 <INPUT TYPE=checkbox NAME=g5bpcal SIZE=0>
 </TD></TR>

 <TR><TD>divide gain by 4 (Amp)</TD><TD>
 <INPUT TYPE=checkbox NAME=g5pacal SIZE=0>
 </TD></TR>

 <TR><TD>heat sensor or ref.</TD><TD>
 <INPUT TYPE=checkbox NAME=selhcal SIZE=0>
 </TD></TR>

 <TR><TD>heater current</TD><TD>
 <INPUT TYPE=radio NAME=curcal VALUE=0 SIZE=0>0
 <INPUT TYPE=radio NAME=curcal VALUE=15 SIZE=0>15 uA
 <INPUT TYPE=radio NAME=curcal VALUE=30 SIZE=0>30 uA
 </TD></TR>

 <TR><TD></TR></TD>

 <TR><TH>Resonant Sensor</TH><TH>value</TH></TR>
 <TR><TD>power on delay</TD><TD>
 <?PHP

for ($i=0; $i<16; $i++) {
$time=256*pow(2,$i)/800000;
echo “<INPUT TYPE=radio NAME=ponres VALUE=$i SIZE=0> ”.$time.”

s
”;
}

 ?>
 </TD></TR>

 <TR><TD>sample delay</TD><TD>
 <?PHP
 for ($i=0; $i<16; $i++) {
 $time=256*pow(2,$i)/800000;

echo “<INPUT TYPE=radio NAME=sdres VALUE=$i
SIZE=0> ”.$time.” s
”;
 }
 ?>
 </TD></TR>

 <TR><TD>Delay</TD><TD>
 <INPUT TYPE=radio NAME=delres VALUE=0 SIZE=0>0 ns
 <INPUT TYPE=radio NAME=delres VALUE=1 SIZE=0>200 ns
 <INPUT TYPE=radio NAME=delres VALUE=2 SIZE=0>400 ns
 <INPUT TYPE=radio NAME=delres VALUE=3 SIZE=0>600 ns
 </TD></TR>

 <TR><TD>divide delay by</TD><TD>
 <INPUT TYPE=radio NAME=curres VALUE=0 SIZE=0>4
 <INPUT TYPE=radio NAME=curres VALUE=1 SIZE=0>3

 Appendix 2

80

 <INPUT TYPE=radio NAME=curres VALUE=2 SIZE=0>2
 <INPUT TYPE=radio NAME=curres VALUE=3 SIZE=0>1
 </TD></TR>

 <TR><TD>divide current in amp by 2</TD><TD>
 <INPUT TYPE=checkbox NAME=halfres SIZE=0>
 </TD></TR>

 <TR><TD>double current in amp</TD><TD>
 <INPUT TYPE=checkbox NAME=dblres SIZE=0>
 </TD></TR>

 <TR><TD></TR></TD>

 </TABLE>
<hr>
 <input type=submit value=”Generate scan vector”>
 </FORM></center>
 </BODY>
</HTML>

==
generate.php3 takes the choices via http get and compiles the scan vector
==

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN” “ht-
tp://www.w3.org/TR/REC-html40/loose.dtd”>
<HTML>
 <HEAD>
 <TITLE>ScanChain</TITLE>
<link rel=stylesheet type=”text/css” href=”wwn.css”>
 </HEAD>

 <BODY LINK=”#000000” VLINK=”#808080”>

 <?PHP
$b_poncap = decbin($poncap); for ($i=strlen($b_poncap); $i<4; $i++)

$b_poncap=”0”.$b_poncap;
$b_sdcap = decbin($sdcap); for ($i=strlen($b_sdcap); $i<4; $i++)

$b_sdcap=”0”.$b_sdcap;
$b_gtcap = decbin($gtcap); for ($i=strlen($b_gtcap); $i<3; $i++)

$b_gtcap=”0”.$b_gtcap;
$b_compcap = decbin($compcap); for ($i=strlen($b_compcap); $i<6; $i++)

$b_compcap=”0”.$b_compcap;
$b_sigdelcap = decbin($sigdelcap); for ($i=strlen($b_sigdelcap); $i<2;

$i++) $b_sigdelcap=”0”.$b_sigdelcap;

81

if ($ecfbcap==”on”) $b_ecfbcap=”1”; else $b_ecfbcap=”0”;
if ($eccap==”on”) $b_eccap=”1”; else $b_eccap=”0”;
if ($tempcap==”on”) $b_tempcap=”1”; else $b_tempcap=”0”;
$b_cap =

$b_poncap.$b_sdcap.$b_gtcap.$b_compcap.$b_sigdelcap.$b_ecfbcap.$b_eccap.$b_
tempcap;

echo $b_cap.” “.strlen($b_cap).”
”;

$b_poncal = decbin($poncal); for ($i=strlen($b_poncal); $i<4; $i++)
$b_poncal=”0”.$b_poncal;

$b_sdcal = decbin($sdcal); for ($i=strlen($b_sdcal); $i<4; $i++)
$b_sdcal=”0”.$b_sdcal;

if ($tempcal==”on”) $b_tempcal=”1”; else $b_tempcal=”0”;
if ($g5bpcal==”on”) $b_g5bpcal=”1”; else $b_g5bpcal=”0”;
if ($g5pacal==”on”) $b_g5pacal=”1”; else $b_g5pacal=”0”;
if ($selhcal==”on”) $b_selhcal=”1”; else $b_selhcal=”0”;
if ($curcal==”0”) $b_curcal=”00”; else if ($curcal==”15”) $b_curcal=”01”;

else if ($curcal==”30”) $b_curcal=”11”;
$b_cal =

$b_poncal.$b_sdcal.$b_tempcal.$b_g5bpcal.$b_g5pacal.$b_selhcal.$b_curcal;
echo $b_cal.” “.strlen($b_cal).”
”;

$b_ponres = decbin($ponres); for ($i=strlen($b_ponres); $i<4; $i++)
$b_ponres=”0”.$b_ponres;

$b_sdres = decbin($sdres); for ($i=strlen($b_sdres); $i<4; $i++)
$b_sdres=”0”.$b_sdres;

if ($delres==”0”) $b_delres=”000”; else if ($delres==”1”) $b_delres=”001”;
else if ($delres==”2”) $b_delres=”011”; else if ($delres==”3”)
$b_delres=”111”;

$b_curres = decbin($curres); for ($i=strlen($b_curres); $i<2; $i++)
$b_curres=”0”.$b_curres;

if ($halfres==”on”) $b_halfres=”1”; else $b_halfres=”0”;
if ($dblres==”on”) $b_dblres=”1”; else $b_dblres=”0”;
$b_res = $b_ponres.$b_sdres.$b_delres.$b_curres.$b_halfres.$b_dblres;
echo $b_res.” “.strlen($b_res).”
”;

echo “

Resulting scan vector:

”;
$vector = ““;
for ($i=1; $i<=99; $i++) $vector=$vector.”0”;
$vector = $vector.$b_cal;
for ($i=1; $i<=6; $i++) $vector=$vector.”0”;
$vector = $vector.$b_cap;
for ($i=1; $i<=6; $i++) $vector=$vector.”0”;
$vector = $vector.$b_ponres.$b_sdres.$b_delres.$b_curres.$b_halfres;
for ($i=1; $i<=20; $i++) $vector=$vector.”0”;
$vector = $vector.$b_dblres;
for ($i=1; $i<=345; $i++) $vector=$vector.”0”;
echo “length: “.strlen($vector).”

”.$vector.”

”;
if (strlen($vector)!=527) echo “Attention: scan vector is

not 527 bits long. Pls check settings!”;

echo “
 ”;

 Appendix 2

82

 ?>
 </BODY>
</HTML>

===
the stylesheet file
===

/* Seite */
body {font-family:Helvetica,sans-serif}

/* Links */
a {font-family:Helvetica,sans-serif; text-decoration:none; color:#808080}

/* Text und Titel */
p {color:#333333; margin-top:0px}
td {font-family:Helvetica,sans-serif; font-size: 18pt; color:#333333}
th {background:#cecece; font-family:Helvetica,sans-serif; color:#333333}
h1 {font-weight:bold; color:#333333; margin-top:0px; margin-bottom:0px}
h6 {font-wight:bold; color:#333333; margin-top:0px; margin-bottom:0px}

83

APPENDIX 3

SCAN CHAIN VECTOR GENERATION

===
xform527.1wait takes a 527bit sequence and compiles it into a 16702 ASCII file
===

#!/bin/perl

use strict;

my ($infile, $outfile, $vector, $i, $clk);

$infile = $ARGV[0] || die “Please invoke with xform527 <infile> <outfile>!\n”;
$outfile = $ARGV[1] || die “Please invoke with xform527 <infile> <out-
file>!\n”;

open(VECT, $infile) || die “could not open input file\n”;
$vector = <VECT>;
open (OUT, “>$outfile”) || die “could not create output file\ n”;
open (HEAD, “HEAD_scanin”) || die “could not read header\n”;

if (length($vector) != 528) {die “Vector is not 527 bits long: “.(length($vec-
tor)-1).”!\n”;}
$clk = 1;

while (<HEAD>) {print OUT;} #print ASCII file header

for ($i=0; $i<527; $i++) {#clock the scan vector into the scan chain (527
bits)

print OUT ($clk=(not $clk)?1:0). ” 1 0 0 0 0 0 0 1 “.substr($vector, $i,
1).” 1 1 “.$clk.” 0\n”;

print OUT ($clk=(not $clk)?1:0). ” 1 0 0 0 0 0 0 1 “.substr($vector, $i,
1).” 1 1 “.$clk.” 0\n”;
}

print OUT ($clk=(not $clk)?1:0).” 1 0 0 0 0 0 0 1 0 0 1 “.$clk.” 0\n”;#oper-
ate clk once w/ scanen=0 in order to process scan
print OUT ($clk=(not $clk)?1:0).” 1 0 0 0 0 0 0 1 0 0 1 “.$clk.” 0\n”;

for ($i=0; $i<527; $i++) {#read out the answer
print OUT ($clk=(not $clk)?1:0).” 1 0 0 0 0 0 0 1 0 1 1 “.$clk.” 1\n”;
print OUT ($clk=(not $clk)?1:0).” 1 0 0 0 0 0 0 1 0 1 1 “.$clk.” 1\n”;

 Appendix 3

84

}

close (VECT);
close (HEAD);
close (OUT);

===
xform527.progwait takes several 527bit sequence and compiles them into a 16702
ASCII file
===

#!/bin/perl

use strict;

my ($name, $infile, $outfile, $vector, $i, $clk, $counts, $filenumber);

$infile = $ARGV[0] || die “Please invoke with xform527 <infile> <outfile>!\n”;
$outfile = $ARGV[1] || die “Please invoke with xform527 <infile> <out-
file>!\n”;

$filenumber=1;

open (OUT, “>$outfile”) || die “could not create output file\ n”;
open (HEAD, “HEAD_scanin”) || die “could not read header\n”;
$clk = 1;

while (<HEAD>) {print OUT;} #print ASCII file header

$name = $infile.$filenumber;

while (-e $name) {#while there a files left
open(VECT, $name) || die “could not open input file\n”;
($vector, $counts) = <VECT>;#read in vector and wait clocks
chomp $counts;
if (length($vector) != 528) {die “Vector is not 527 bits long:

“.(length($vector)-1).”!\n”;}

print “in “.$name.” we will wait “.$counts.” clock cycles for the an-
swer.\n”;

for ($i=0; $i<527; $i++) {#clock the scan vector into the scan chain (527
bits)

print OUT ($clk=(not $clk)?1:0).” 1 0 0 0 0 0 0 1 “.substr($vector, $i,
1).” 1 1 “.$clk.” 1\n”;

print OUT ($clk=(not $clk)?1:0).” 1 0 0 0 0 0 0 1 “.substr($vector, $i,
1).” 1 1 “.$clk.” 1\n”;

}

for ($i=0; $i<$counts; $i++) {#generate $counts clock cycles
print OUT ($clk=(not $clk)?1:0).” 1 0 0 0 0 0 0 1 0 0 1 “.$clk.” 0\n”;

#operate clk once w/ scanen=0 in order to process scan

85

print OUT ($clk=(not $clk)?1:0).” 1 0 0 0 0 0 0 1 0 0 1 “.$clk.” 0\n”;
}

close (VECT);
$name = $infile.++$filenumber;

}

for ($i=0; $i<527; $i++) {#read out the answer
print OUT ($clk=(not $clk)?1:0).” 1 0 0 0 0 0 0 1 0 1 1 “.$clk.” 1\n”;
print OUT ($clk=(not $clk)?1:0).” 1 0 0 0 0 0 0 1 0 1 1 “.$clk.” 1\n”;

}

print OUT ($clk=(not $clk)?1:0).” 0 0 0 0 0 0 0 0 0 0 0 “.$clk.” 0\n”;#step
to the next chip
print OUT ($clk=(not $clk)?1:0).” 0 0 0 0 0 0 0 0 0 0 0 “.$clk.” 0\n”;

close (HEAD);
close (OUT);

 Appendix 3

86

87

APPENDIX 4

READOUT SCRIPTS

countbits.pl
===
#!/bin/perl -w

use strict;

my ($i, $infile, @vect, $flag);
my ($n, $f);
my ($value);
my ($fn)=0;

$infile = $ARGV[0] || die “Please invoke with xform <infile> <outfile>!\n”;

open (VECT, “$infile”) || die “could not open input file\n”;

for ($i=0; $i<8; $i++) {#get rid of the 8 line header
$f = <VECT>;

}

$n=0;

while ($vect[$n++] = <VECT>) { #split file into parts of 527 lines, for
each part do display_result()

if ($n == 527) {
display_result();
$n=0;

}
} #VECT
if ($n != 1) {print $n.” The vector doesn’t consist of n*527 bits!!\n”;}

sub display_result {
$value = 0;
foreach (@vect) {#extract the values

my ($bit, $state) = split(“ “, $_);
$value += $bit;

}
print “The sum of all the bits in the vector is $value\n\n”;

}

 Appendix 4

88

close (VECT);

readout.pl
===
#!/bin/perl -w

use strict;

my ($i, $outfile, $infile, @vect, $f, $flag);
my ($n);
my (@values, @states, $values, $states, $cap, $capval, $cal, $calval, $res,
$resval);
my ($fn)=0;

$infile = $ARGV[0] || die “Please invoke with xform <infile> <outfile>!\n”;
$outfile = $infile.”gnuplot”;

open (VECT, “$infile”) || die “could not open input file\n”;
open (OUT, “>$outfile”) || die “could not create output file\n”;
open (GNU, “>gnuplot.bat”) || die “could not create gnuplot file\n”;

print OUT “#count\tcap\tcal\tres\n”;#write into gnuplot data file

for ($i=0; $i<8; $i++) {#get rid of the 8 line header
$f = <VECT>;

}

$n=0;

while ($vect[$n++] = <VECT>) { #split file into parts of 527 lines, for
each part do display_result()

if ($n == 527) {
display_result();
$n=0;

}
} #VECT
if ($n != 1) {print $n.” The vector doesn’t consist of n*527 bits!!\n”;}

sub display_result {
$values = ““;
foreach (@vect) {#extract the values

my ($bit, $state) = split(“ “, $_);
$values = $values.$bit;

}
$cap = substr($values, 183, 20);#get bits 183-202 for the output register
$capval = unpack(‘V’,pack(“b*”,”$cap”.(“0”x12)));

89

$cal = substr($values, 206, 13);
$calval = unpack(‘V’,pack(“b*”,”$cal”.(“0”x19)));
$res = substr($values, 219, 19);
$resval = unpack(‘V’,pack(“b*”,”$res”.(“0”x13)));

print “Capacitive sensor says: $capval\nCalorimetric sensor says: $cal-
val\nResonant sensor says: $resval\n\n”;

print OUT “$fn\t$capval\t$calval\t$resval\n”;#write into gnuplot data file
$fn++;

}

print GNU “set term post color \”Arial\” 14\nset autoscale x\nset autoscale
y\nset autoscale y2\nset xlabel \”measurement #\”\nset ylabel \”cap+res
[int]\”\nset y2tics\nset y2label \”cal [int]\”\nplot [1:] \”$outfile\” using
2 title \”cap\” with linespoints, \”$outfile\” using 3 axes x1y2 title \”cal\”
with linespoints, \”$outfile\” using 4 title \”res\” with linespoints”;
#start gnupplot to generate gfx
close (GNU);
close (VECT);
close (OUT);

system(“/soft/gnu/bin/gnuplot <gnuplot.bat >$infile.ps”);
system(“ghostview $infile.ps”);

 Appendix 4

90

91

APPENDIX 5

RPI CONTROL PROGRAM

#!/bin/perl -w

use strict;
use IO::Socket;

my ($output, $command);
my ($sock, $i, $answer);

openConnection();
oadConfig(“/logic/pel/vector1”);

for ($i = 0; $i < 16; $i++) { #step thru all 16 reticles
putLine(“start\n”);
waitfor(“->stopped”);
print “fertig!!!!\n”;

}

sub openConnection { #opens the network connection to 16702

my $host = shift || ‘iqe-mac-117.ethz.ch’;
my $port = shift || 6500;
$sock = new IO::Socket::INET(
 PeerAddr => $host,
 PeerPort => $port,
 Proto => ‘tcp’);
$sock or die “no socket :$!”;
}

sub closeConnection {
close($sock);

}

sub waitfor { #waits until 16702 responds the argument
my ($s)=$_[0];

 do {

 Appendix 5

92

 putLine(“status\n”);
do { $answer=<$sock>; sleep 1} while ($answer eq ““);

 } until ($answer =~ m/$s/i);
}

sub putLine { #sends a command to 16702
my ($command);
($command) = @_;
print $sock ($command);

}

sub loadConfig { #loads a given configuration
my ($command);
($command) = @_;
$command = ‘config -l ‘.$command.”\n”;
putLine($command);

}

93

APPENDIX 6

SCAN CHAIN

1: Core/I2CAsync/RepStart2_reg
2: Core/I2CAsync/RepStart_reg
3: Core/I2CAsync/RunInt_reg
4: Core/SyncI2C/CalTC/U1/Current_State_reg[0] (*)
5: Core/SyncI2C/CalTC/U1/Current_State_reg[1] (*)
6: Core/SyncI2C/CalTC/U1/Current_State_reg[2] (*)
7: Core/SyncI2C/CalTC/U1/Current_State_reg[3] (*)
8: Core/SyncI2C/CalTC/U1/Finish_reg (*)
9: Core/SyncI2C/CalTC/U1/Power_reg (*)
10: Core/SyncI2C/CalTC/U1/RCnt_p/ZeroInt_reg (*)
11: Core/SyncI2C/CalTC/U1/RegSel_reg
12: Core/SyncI2C/CalTC/U1/XLoadRCnt_reg (*)
13: Core/SyncI2C/CalTC/U2/Current_State_reg[0] (*)
14: Core/SyncI2C/CalTC/U2/Current_State_reg[1] (*)
15: Core/SyncI2C/CalTC/U3/Q1_reg (*)
16: Core/SyncI2C/CalTC/U3/Q2_reg (*)
17: Core/SyncI2C/CapTC/U1/Current_State_reg[0] (*)
18: Core/SyncI2C/CapTC/U1/Current_State_reg[1] (*)
19: Core/SyncI2C/CapTC/U1/Current_State_reg[2] (*)
20: Core/SyncI2C/CapTC/U1/Current_State_reg[3] (*)
21: Core/SyncI2C/CapTC/U1/Finish_reg (*)
22: Core/SyncI2C/CapTC/U1/Power_reg (*)
23: Core/SyncI2C/CapTC/U1/RCnt_p/ZeroInt_reg (*)
24: Core/SyncI2C/CapTC/U1/RegSel_reg
25: Core/SyncI2C/CapTC/U1/XLoadRCnt_reg (*)
26: Core/SyncI2C/CapTC/U2/Current_State_reg[0] (*)
27: Core/SyncI2C/CapTC/U2/Current_State_reg[1] (*)
28: Core/SyncI2C/CapTC/U3/Q1_reg
29: Core/SyncI2C/CapTC/U3/Q2_reg
30: Core/SyncI2C/FIFOStack/InFIFO/Dack_Int_reg[0] (*)
31: Core/SyncI2C/FIFOStack/InFIFO/Dack_Int_reg[1] (*)
32: Core/SyncI2C/FIFOStack/InFIFO/Dack_Int_reg[2]
33: Core/SyncI2C/FIFOStack/OutFIFO/Current_State_reg[0] (*)
34: Core/SyncI2C/FIFOStack/OutFIFO/Current_State_reg[1]
35: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[0][0] (*)
36: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[0][1] (*)
37: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[0][2] (*)
38: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[0][3] (*)
39: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[0][4] (*)
40: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[0][5] (*)
41: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[0][6] (*)
42: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[0][7] (*)
43: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[1][0] (*)

 Appendix 6

94

44: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[1][1] (*)
45: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[1][2] (*)
46: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[1][3] (*)
47: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[1][4] (*)
48: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[1][5] (*)
49: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[1][6] (*)
50: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[1][7] (*)
51: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[2][0]
52: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[2][1]
53: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[2][2]
54: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[2][3]
55: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[2][4]
56: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[2][5]
57: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[2][6]
58: Core/SyncI2C/FIFOStack/StackFIFO/Data_reg[2][7]
59: Core/SyncI2C/FIFOStack/StackFIFO/Diff_Ptr_reg[0] (*)
60: Core/SyncI2C/FIFOStack/StackFIFO/Diff_Ptr_reg[1] (*)
61: Core/SyncI2C/FIFOStack/StackFIFO/Rd_Ptr_reg[0]
62: Core/SyncI2C/FIFOStack/StackFIFO/Rd_Ptr_reg[1]
63: Core/SyncI2C/FIFOStack/StackFIFO/Wr_Ptr_reg[0]
64: Core/SyncI2C/FIFOStack/StackFIFO/Wr_Ptr_reg[1]
65: Core/SyncI2C/Master/CntBit_reg[0]
66: Core/SyncI2C/Master/CntBit_reg[1] (*)
67: Core/SyncI2C/Master/CntBit_reg[2] (*)
68: Core/SyncI2C/Master/CntBit_reg[3] (*)
69: Core/SyncI2C/Master/CntByte_reg[0]
70: Core/SyncI2C/Master/CntByte_reg[1] (*)
71: Core/SyncI2C/Master/CntByte_reg[2] (*)
72: Core/SyncI2C/Master/Current_State_reg[0] (*)
73: Core/SyncI2C/Master/Current_State_reg[1]
74: Core/SyncI2C/Master/Current_State_reg[2]
75: Core/SyncI2C/Master/Current_State_reg[3] (*)
76: Core/SyncI2C/Master/SCL_Out_reg (*)
77: Core/SyncI2C/Master/SDA_Out_reg (*)
78: Core/SyncI2C/RCnt_p/count_reg[0] (*)
79: Core/SyncI2C/RCnt_p/y_int_reg
80: Core/SyncI2C/ResTC/U1/Current_State_reg[0] (*)
81: Core/SyncI2C/ResTC/U1/Current_State_reg[1] (*)
82: Core/SyncI2C/ResTC/U1/Current_State_reg[2] (*)
83: Core/SyncI2C/ResTC/U1/Current_State_reg[3] (*)
84: Core/SyncI2C/ResTC/U1/Finish_reg (*)
85: Core/SyncI2C/ResTC/U1/Power_reg (*)
86: Core/SyncI2C/ResTC/U1/RCnt_p/ZeroInt_reg (*)
87: Core/SyncI2C/ResTC/U1/RegSel_reg
88: Core/SyncI2C/ResTC/U1/XLoadRCnt_reg (*)
89: Core/SyncI2C/ResTC/U2/Current_State_reg[0] (*)
90: Core/SyncI2C/ResTC/U2/Current_State_reg[1] (*)
91: Core/SyncI2C/ResTC/U3/Q1_reg
92: Core/SyncI2C/ResTC/U3/Q2_reg
93: Core/SyncI2C/Master/LastSCL_reg (*)
94: Core/SyncI2C/RegBank/RegBankCal/CmdReg_Int_reg[0] (*)
95: Core/SyncI2C/RegBank/RegBankCal/CmdReg_Int_reg[1] (*)
96: Core/SyncI2C/RegBank/RegBankCal/CmdReg_Int_reg[2] (*)

95

97: Core/SyncI2C/RegBank/RegBankCal/CmdReg_Int_reg[3] (*)
98: Core/SyncI2C/RegBank/RegBankCal/CmdReg_Int_reg[4] (*)
99: Core/SyncI2C/RegBank/RegBankCal/CmdReg_Int_reg[5] (*)
100: Core/SyncI2C/RegBank/RegBankCal/ComReg1_reg[0] (*) register calsens
101: Core/SyncI2C/RegBank/RegBankCal/ComReg1_reg[1] (*) “
102: Core/SyncI2C/RegBank/RegBankCal/ComReg1_reg[2] (*) “
103: Core/SyncI2C/RegBank/RegBankCal/ComReg1_reg[3] (*) “
104: Core/SyncI2C/RegBank/RegBankCal/ComReg2_reg[0] (*) “
105: Core/SyncI2C/RegBank/RegBankCal/ComReg2_reg[1] (*) “
106: Core/SyncI2C/RegBank/RegBankCal/ComReg2_reg[2] (*) “
107: Core/SyncI2C/RegBank/RegBankCal/ComReg2_reg[3] (*) “
108: Core/SyncI2C/RegBank/RegBankCal/ComReg3_reg[0] (*) “
109: Core/SyncI2C/RegBank/RegBankCal/ComReg3_reg[1] (*) “
110: Core/SyncI2C/RegBank/RegBankCal/ComReg3_reg[2] (*) “
111: Core/SyncI2C/RegBank/RegBankCal/ComReg3_reg[3] (*) “
112: Core/SyncI2C/RegBank/RegBankCal/ComReg3_reg[4] (*) “
113: Core/SyncI2C/RegBank/RegBankCal/ComReg3_reg[5] (*) end
114: Core/SyncI2C/RegBank/RegBankCap/CmdReg_Int_reg[0] (*)
115: Core/SyncI2C/RegBank/RegBankCap/CmdReg_Int_reg[1] (*)
116: Core/SyncI2C/RegBank/RegBankCap/CmdReg_Int_reg[2] (*)
117: Core/SyncI2C/RegBank/RegBankCap/CmdReg_Int_reg[3] (*)
118: Core/SyncI2C/RegBank/RegBankCap/CmdReg_Int_reg[4] (*)
119: Core/SyncI2C/RegBank/RegBankCap/CmdReg_Int_reg[5] (*)
120: Core/SyncI2C/RegBank/RegBankCap/ComReg1_reg[0] (*) register capsens
121: Core/SyncI2C/RegBank/RegBankCap/ComReg1_reg[1] (*) “
122: Core/SyncI2C/RegBank/RegBankCap/ComReg1_reg[2] (*) “
123: Core/SyncI2C/RegBank/RegBankCap/ComReg1_reg[3] (*) “
124: Core/SyncI2C/RegBank/RegBankCap/ComReg2_reg[0] (*) “
125: Core/SyncI2C/RegBank/RegBankCap/ComReg2_reg[1] (*) “
126: Core/SyncI2C/RegBank/RegBankCap/ComReg2_reg[2] (*) “
127: Core/SyncI2C/RegBank/RegBankCap/ComReg2_reg[3] (*) “
128: Core/SyncI2C/RegBank/RegBankCap/ComReg3_reg[0] (*) “
129: Core/SyncI2C/RegBank/RegBankCap/ComReg3_reg[1] (*) “
130: Core/SyncI2C/RegBank/RegBankCap/ComReg3_reg[2] (*) “
131: Core/SyncI2C/RegBank/RegBankCap/ComReg4_reg[0] (*) “
132: Core/SyncI2C/RegBank/RegBankCap/ComReg4_reg[1] (*) “
133: Core/SyncI2C/RegBank/RegBankCap/ComReg4_reg[2] (*) “
134: Core/SyncI2C/RegBank/RegBankCap/ComReg4_reg[3] (*) “
135: Core/SyncI2C/RegBank/RegBankCap/ComReg4_reg[4] (*) “
136: Core/SyncI2C/RegBank/RegBankCap/ComReg4_reg[5] (*) “
137: Core/SyncI2C/RegBank/RegBankCap/ComReg5_reg[0] (*) “
138: Core/SyncI2C/RegBank/RegBankCap/ComReg5_reg[1] (*) “
139: Core/SyncI2C/RegBank/RegBankCap/ComReg5_reg[2] (*) “
140: Core/SyncI2C/RegBank/RegBankCap/ComReg5_reg[3] (*) “
141: Core/SyncI2C/RegBank/RegBankCap/ComReg5_reg[4] (*) emd
142: Core/SyncI2C/RegBank/RegBankRes/CmdReg_Int_reg[0] (*)
143: Core/SyncI2C/RegBank/RegBankRes/CmdReg_Int_reg[1] (*)
144: Core/SyncI2C/RegBank/RegBankRes/CmdReg_Int_reg[2] (*)
145: Core/SyncI2C/RegBank/RegBankRes/CmdReg_Int_reg[3] (*)
146: Core/SyncI2C/RegBank/RegBankRes/CmdReg_Int_reg[4] (*)
147: Core/SyncI2C/RegBank/RegBankRes/CmdReg_Int_reg[5] (*)
148: Core/SyncI2C/RegBank/RegBankRes/ComReg1_reg[0] (*) register ressens
149: Core/SyncI2C/RegBank/RegBankRes/ComReg1_reg[1] (*) “

 Appendix 6

96

150: Core/SyncI2C/RegBank/RegBankRes/ComReg1_reg[2] (*) “
151: Core/SyncI2C/RegBank/RegBankRes/ComReg1_reg[3] (*) “
152: Core/SyncI2C/RegBank/RegBankRes/ComReg2_reg[0] (*) “
153: Core/SyncI2C/RegBank/RegBankRes/ComReg2_reg[1] (*) “
154: Core/SyncI2C/RegBank/RegBankRes/ComReg2_reg[2] (*) “
155: Core/SyncI2C/RegBank/RegBankRes/ComReg2_reg[3] (*) “
156: Core/SyncI2C/RegBank/RegBankRes/ComReg3_reg[0] (*) “
157: Core/SyncI2C/RegBank/RegBankRes/ComReg3_reg[1] (*) “
158: Core/SyncI2C/RegBank/RegBankRes/ComReg3_reg[2] (*) “
159: Core/SyncI2C/RegBank/RegBankRes/ComReg3_reg[3] (*) “
160: Core/SyncI2C/RegBank/RegBankRes/ComReg3_reg[4] (*) “
161: Core/SyncI2C/RegBank/RegBankRes/ComReg3_reg[5] (*) ! we have 1 more
162: Core/SyncI2C/Slave/U2/CountIntern_reg[0] (*)
163: Core/SyncI2C/Slave/U2/CountIntern_reg[1]
164: Core/SyncI2C/Slave/U2/CountIntern_reg[2]
165: Core/SyncI2C/Slave/U2/CountIntern_reg[3] (*)
166: Core/SyncI2C/Slave/U3/CountIntern_reg[0] (*)
167: Core/SyncI2C/Slave/U3/CountIntern_reg[1]
168: Core/SyncI2C/Slave/U3/CountIntern_reg[2] (*)
169: Core/SyncI2C/Slave/U5/Selec_reg (*)
170: Core/SyncI2C/Slave/U5/SenAdr_reg[0] (*)
171: Core/SyncI2C/Slave/U5/SenAdr_reg[1] (*)
172: Core/SyncI2C/Master/LastDat_reg (*)
173: Core/SyncI2C/Slave/U4/DataReg_reg[0] (*)
174: Core/SyncI2C/Slave/U4/DataReg_reg[1] (*)
175: Core/SyncI2C/Slave/U4/DataReg_reg[2] (*)
176: Core/SyncI2C/Slave/U4/DataReg_reg[3] (*)
177: Core/SyncI2C/Slave/U4/DataReg_reg[4] (*)
178: Core/SyncI2C/Slave/U4/DataReg_reg[5] (*)
179: Core/SyncI2C/Slave/U4/DataReg_reg[6] (*)
180: Core/SyncI2C/Slave/U4/DataReg_reg[7] (*)
181: Core/SyncI2C/Slave/U6/Finish_reg
182: Core/SyncI2C/RegBank/RegBankRes/ComReg3_reg[6] register ressens[6]
183: DecimationFilter/CapVal_reg[0] output capsens
184: DecimationFilter/CapVal_reg[1] “
185: DecimationFilter/CapVal_reg[2] “
186: DecimationFilter/CapVal_reg[3] “
187: DecimationFilter/CapVal_reg[4] “
188: DecimationFilter/CapVal_reg[5] “
189: DecimationFilter/CapVal_reg[6] “
190: DecimationFilter/CapVal_reg[7] “
191: DecimationFilter/CapVal_reg[8] “
192: DecimationFilter/CapVal_reg[9] “
193: DecimationFilter/CapVal_reg[10] “
194: DecimationFilter/CapVal_reg[11] “
195: DecimationFilter/CapVal_reg[12] “
196: DecimationFilter/CapVal_reg[13] “
197: DecimationFilter/CapVal_reg[14] “
198: DecimationFilter/CapVal_reg[15] “
199: DecimationFilter/CapVal_reg[16] “
200: DecimationFilter/CapVal_reg[17] “
201: DecimationFilter/CapVal_reg[18] “
202: DecimationFilter/CapVal_reg[19] end

97

203: DecimationFilter/ConvClk/ZeroInt_reg (*)
204: DecimationFilter/GetCnt_reg
205: DecimationFilter/XLoad_reg (*)
206: DecimationFilter/CalFIR/DataOut_reg[0] output calsens
207: DecimationFilter/CalFIR/DataOut_reg[1] “
208: DecimationFilter/CalFIR/DataOut_reg[2] “
209: DecimationFilter/CalFIR/DataOut_reg[3] “
210: DecimationFilter/CalFIR/DataOut_reg[4] “
211: DecimationFilter/CalFIR/DataOut_reg[5] “
212: DecimationFilter/CalFIR/DataOut_reg[6] “
213: DecimationFilter/CalFIR/DataOut_reg[7] “
214: DecimationFilter/CalFIR/DataOut_reg[8] “
215: DecimationFilter/CalFIR/DataOut_reg[9] “
216: DecimationFilter/CalFIR/DataOut_reg[10] “
217: DecimationFilter/CalFIR/DataOut_reg[11] “
218: DecimationFilter/CalFIR/DataOut_reg[12] end
219: DecimationFilter/ResVal_reg[0] output ressens
220: DecimationFilter/ResVal_reg[1] “
221: DecimationFilter/ResVal_reg[2] “
222: DecimationFilter/ResVal_reg[3] “
223: DecimationFilter/ResVal_reg[4] “
224: DecimationFilter/ResVal_reg[5] “
225: DecimationFilter/ResVal_reg[6] “
226: DecimationFilter/ResVal_reg[7] “
227: DecimationFilter/ResVal_reg[8] “
228: DecimationFilter/ResVal_reg[9] “
229: DecimationFilter/ResVal_reg[10] “
230: DecimationFilter/ResVal_reg[11] “
231: DecimationFilter/ResVal_reg[12] “
232: DecimationFilter/ResVal_reg[13] “
233: DecimationFilter/ResVal_reg[14] “
234: DecimationFilter/ResVal_reg[15] “
235: DecimationFilter/ResVal_reg[16] “
236: DecimationFilter/ResVal_reg[17] “
237: DecimationFilter/ResVal_reg[18] end
238: DecimationFilter/CalSinc/INT1/DataReg_reg[0]
239: DecimationFilter/CalSinc/INT1/DataReg_reg[1]
240: DecimationFilter/CalSinc/INT1/DataReg_reg[2]
241: DecimationFilter/CalSinc/INT1/DataReg_reg[3]
242: DecimationFilter/CalSinc/INT1/DataReg_reg[4]
243: DecimationFilter/CalSinc/INT1/DataReg_reg[5]
244: DecimationFilter/CalSinc/INT1/DataReg_reg[6]
245: DecimationFilter/CalSinc/INT1/DataReg_reg[7]
246: DecimationFilter/CalSinc/INT1/DataReg_reg[8]
247: DecimationFilter/CalSinc/INT1/DataReg_reg[9]
248: DecimationFilter/CalSinc/INT1/DataReg_reg[10]
249: DecimationFilter/CalSinc/INT1/DataReg_reg[11]
250: DecimationFilter/CalSinc/INT1/DataReg_reg[12]
251: DecimationFilter/CalSinc/INT1/DataReg_reg[13]
252: DecimationFilter/CalSinc/INT1/DataReg_reg[14]
253: DecimationFilter/CalSinc/INT1/DataReg_reg[15]
254: DecimationFilter/CalSinc/INT2/DataReg_reg[0]
255: DecimationFilter/CalSinc/INT2/DataReg_reg[1]

 Appendix 6

98

256: DecimationFilter/CalSinc/INT2/DataReg_reg[2]
257: DecimationFilter/CalSinc/INT2/DataReg_reg[3]
258: DecimationFilter/CalSinc/INT2/DataReg_reg[4]
259: DecimationFilter/CalSinc/INT2/DataReg_reg[5]
260: DecimationFilter/CalSinc/INT2/DataReg_reg[6]
261: DecimationFilter/CalSinc/INT2/DataReg_reg[7]
262: DecimationFilter/CalSinc/INT2/DataReg_reg[8]
263: DecimationFilter/CalSinc/INT2/DataReg_reg[9]
264: DecimationFilter/CalSinc/INT2/DataReg_reg[10]
265: DecimationFilter/CalSinc/INT2/DataReg_reg[11]
266: DecimationFilter/CalSinc/INT2/DataReg_reg[12]
267: DecimationFilter/CalSinc/INT2/DataReg_reg[13]
268: DecimationFilter/CalSinc/INT2/DataReg_reg[14]
269: DecimationFilter/CalSinc/INT3/DataReg_reg[0]
270: DecimationFilter/CalSinc/INT3/DataReg_reg[1]
271: DecimationFilter/CalSinc/INT3/DataReg_reg[2]
272: DecimationFilter/CalSinc/INT3/DataReg_reg[3]
273: DecimationFilter/CalSinc/INT3/DataReg_reg[4]
274: DecimationFilter/CalSinc/INT3/DataReg_reg[5]
275: DecimationFilter/CalSinc/INT3/DataReg_reg[6]
276: DecimationFilter/CalSinc/INT3/DataReg_reg[7]
277: DecimationFilter/CalSinc/INT3/DataReg_reg[8]
278: DecimationFilter/CalSinc/INT3/DataReg_reg[9]
279: DecimationFilter/CalSinc/INT3/DataReg_reg[10]
280: DecimationFilter/CalSinc/INT3/DataReg_reg[11]
281: DecimationFilter/CalSinc/INT3/DataReg_reg[12]
282: DecimationFilter/CalSinc/INT3/DataReg_reg[13]
283: DecimationFilter/CalFIR/DEC4/COUNT_reg[0] (*)
284: DecimationFilter/CalFIR/DEC4/COUNT_reg[1]
285: DecimationFilter/CalFIR/DEC4/DecClk_reg
286: DecimationFilter/CalSinc/DataForDIF1_reg[0]
287: DecimationFilter/CalSinc/DataForDIF1_reg[1]
288: DecimationFilter/CalSinc/DataForDIF1_reg[2]
289: DecimationFilter/CalSinc/DataForDIF1_reg[3]
290: DecimationFilter/CalSinc/DataForDIF1_reg[4]
291: DecimationFilter/CalSinc/DataForDIF1_reg[5]
292: DecimationFilter/CalSinc/DataForDIF1_reg[6]
293: DecimationFilter/CalSinc/DataForDIF1_reg[7]
294: DecimationFilter/CalSinc/DataForDIF1_reg[8]
295: DecimationFilter/CalSinc/DataForDIF1_reg[9]
296: DecimationFilter/CalSinc/DataForDIF1_reg[10]
297: DecimationFilter/CalSinc/DataForDIF1_reg[11]
298: DecimationFilter/CalSinc/Diff1/DataReg_reg[0]
299: DecimationFilter/CalSinc/Diff1/DataReg_reg[1]
300: DecimationFilter/CalSinc/Diff1/DataReg_reg[2]
301: DecimationFilter/CalSinc/Diff1/DataReg_reg[3]
302: DecimationFilter/CalSinc/Diff1/DataReg_reg[4]
303: DecimationFilter/CalSinc/Diff1/DataReg_reg[5]
304: DecimationFilter/CalSinc/Diff1/DataReg_reg[6]
305: DecimationFilter/CalSinc/Diff1/DataReg_reg[7]
306: DecimationFilter/CalSinc/Diff1/DataReg_reg[8]
307: DecimationFilter/CalSinc/Diff1/DataReg_reg[9]
308: DecimationFilter/CalSinc/Diff1/DataReg_reg[10]

99

309: DecimationFilter/CalSinc/Diff1/DataReg_reg[11]
310: DecimationFilter/CalSinc/Diff2/DataReg_reg[0]
311: DecimationFilter/CalSinc/Diff2/DataReg_reg[1]
312: DecimationFilter/CalSinc/Diff2/DataReg_reg[2]
313: DecimationFilter/CalSinc/Diff2/DataReg_reg[3]
314: DecimationFilter/CalSinc/Diff2/DataReg_reg[4]
315: DecimationFilter/CalSinc/Diff2/DataReg_reg[5]
316: DecimationFilter/CalSinc/Diff2/DataReg_reg[6]
317: DecimationFilter/CalSinc/Diff2/DataReg_reg[7]
318: DecimationFilter/CalSinc/Diff2/DataReg_reg[8]
319: DecimationFilter/CalSinc/Diff2/DataReg_reg[9]
320: DecimationFilter/CalSinc/Diff2/DataReg_reg[10]
321: DecimationFilter/CalSinc/Diff2/DataReg_reg[11]
322: DecimationFilter/CalSinc/Diff3/DataReg_reg[0]
323: DecimationFilter/CalSinc/Diff3/DataReg_reg[1]
324: DecimationFilter/CalSinc/Diff3/DataReg_reg[2]
325: DecimationFilter/CalSinc/Diff3/DataReg_reg[3]
326: DecimationFilter/CalSinc/Diff3/DataReg_reg[4]
327: DecimationFilter/CalSinc/Diff3/DataReg_reg[5]
328: DecimationFilter/CalSinc/Diff3/DataReg_reg[6]
329: DecimationFilter/CalSinc/Diff3/DataReg_reg[7]
330: DecimationFilter/CalSinc/Diff3/DataReg_reg[8]
331: DecimationFilter/CalSinc/Diff3/DataReg_reg[9]
332: DecimationFilter/CalSinc/Diff3/DataReg_reg[10]
333: DecimationFilter/CalSinc/Diff3/DataReg_reg[11]
334: DecimationFilter/OutputVal_reg[0]
335: DecimationFilter/OutputVal_reg[1]
336: DecimationFilter/OutputVal_reg[2]
337: DecimationFilter/OutputVal_reg[3]
338: DecimationFilter/OutputVal_reg[4]
339: DecimationFilter/OutputVal_reg[5]
340: DecimationFilter/OutputVal_reg[6]
341: DecimationFilter/OutputVal_reg[7]
342: DecimationFilter/OutputVal_reg[8]
343: DecimationFilter/OutputVal_reg[9]
344: DecimationFilter/OutputVal_reg[10]
345: DecimationFilter/OutputVal_reg[11]
346: DecimationFilter/OutputVal_reg[12]
347: DecimationFilter/OutputVal_reg[13]
348: DecimationFilter/OutputVal_reg[14]
349: DecimationFilter/OutputVal_reg[15]
350: DecimationFilter/OutputVal_reg[16]
351: DecimationFilter/OutputVal_reg[17]
352: DecimationFilter/OutputVal_reg[18]
353: DecimationFilter/OutputVal_reg[19]
354: DecimationFilter/CalFIR/D_reg[1][0]
355: DecimationFilter/CalFIR/D_reg[1][1]
356: DecimationFilter/CalFIR/D_reg[1][2]
357: DecimationFilter/CalFIR/D_reg[1][3]
358: DecimationFilter/CalFIR/D_reg[1][4]
359: DecimationFilter/CalFIR/D_reg[1][5]
360: DecimationFilter/CalFIR/D_reg[1][6]
361: DecimationFilter/CalFIR/D_reg[1][7]

 Appendix 6

100

362: DecimationFilter/CalFIR/D_reg[1][8]
363: DecimationFilter/CalFIR/D_reg[1][9]
364: DecimationFilter/CalFIR/D_reg[1][10]
365: DecimationFilter/CalFIR/D_reg[1][11]
366: DecimationFilter/CalFIR/D_reg[1][12]
367: DecimationFilter/CalFIR/D_reg[2][0]
368: DecimationFilter/CalFIR/D_reg[2][1]
369: DecimationFilter/CalFIR/D_reg[2][2]
370: DecimationFilter/CalFIR/D_reg[2][3]
371: DecimationFilter/CalFIR/D_reg[2][4]
372: DecimationFilter/CalFIR/D_reg[2][5]
373: DecimationFilter/CalFIR/D_reg[2][6]
374: DecimationFilter/CalFIR/D_reg[2][7]
375: DecimationFilter/CalFIR/D_reg[2][8]
376: DecimationFilter/CalFIR/D_reg[2][9]
377: DecimationFilter/CalFIR/D_reg[2][10]
378: DecimationFilter/CalFIR/D_reg[2][11]
379: DecimationFilter/CalFIR/D_reg[2][12]
380: DecimationFilter/CalFIR/D_reg[3][0]
381: DecimationFilter/CalFIR/D_reg[3][1]
382: DecimationFilter/CalFIR/D_reg[3][2]
383: DecimationFilter/CalFIR/D_reg[3][3]
384: DecimationFilter/CalFIR/D_reg[3][4]
385: DecimationFilter/CalFIR/D_reg[3][5]
386: DecimationFilter/CalFIR/D_reg[3][6]
387: DecimationFilter/CalFIR/D_reg[3][7]
388: DecimationFilter/CalFIR/D_reg[3][8]
389: DecimationFilter/CalFIR/D_reg[3][9]
390: DecimationFilter/CalFIR/D_reg[3][10]
391: DecimationFilter/CalFIR/D_reg[3][11]
392: DecimationFilter/CalFIR/D_reg[3][12]
393: DecimationFilter/CalFIR/D_reg[4][0]
394: DecimationFilter/CalFIR/D_reg[4][1]
395: DecimationFilter/CalFIR/D_reg[4][2]
396: DecimationFilter/CalFIR/D_reg[4][3]
397: DecimationFilter/CalFIR/D_reg[4][4]
398: DecimationFilter/CalFIR/D_reg[4][5]
399: DecimationFilter/CalFIR/D_reg[4][6]
400: DecimationFilter/CalFIR/D_reg[4][7]
401: DecimationFilter/CalFIR/D_reg[4][8]
402: DecimationFilter/CalFIR/D_reg[4][9]
403: DecimationFilter/CalFIR/D_reg[4][10]
404: DecimationFilter/CalFIR/D_reg[4][11]
405: DecimationFilter/CalFIR/D_reg[4][12]
406: DecimationFilter/CalFIR/D_reg[5][0]
407: DecimationFilter/CalFIR/D_reg[5][1]
408: DecimationFilter/CalFIR/D_reg[5][2]
409: DecimationFilter/CalFIR/D_reg[5][3]
410: DecimationFilter/CalFIR/D_reg[5][4]
411: DecimationFilter/CalFIR/D_reg[5][5]
412: DecimationFilter/CalFIR/D_reg[5][6]
413: DecimationFilter/CalFIR/D_reg[5][7]
414: DecimationFilter/CalFIR/D_reg[5][8]

101

415: DecimationFilter/CalFIR/D_reg[5][9]
416: DecimationFilter/CalFIR/D_reg[5][10]
417: DecimationFilter/CalFIR/D_reg[5][11]
418: DecimationFilter/CalFIR/D_reg[5][12]
419: DecimationFilter/CalFIR/D_reg[6][0]
420: DecimationFilter/CalFIR/D_reg[6][1]
421: DecimationFilter/CalFIR/D_reg[6][2]
422: DecimationFilter/CalFIR/D_reg[6][3]
423: DecimationFilter/CalFIR/D_reg[6][4]
424: DecimationFilter/CalFIR/D_reg[6][5]
425: DecimationFilter/CalFIR/D_reg[6][6]
426: DecimationFilter/CalFIR/D_reg[6][7]
427: DecimationFilter/CalFIR/D_reg[6][8]
428: DecimationFilter/CalFIR/D_reg[6][9]
429: DecimationFilter/CalFIR/D_reg[6][10]
430: DecimationFilter/CalFIR/D_reg[6][11]
431: DecimationFilter/CalFIR/D_reg[6][12]
432: DecimationFilter/CalFIR/D_reg[7][0]
433: DecimationFilter/CalFIR/D_reg[7][1]
434: DecimationFilter/CalFIR/D_reg[7][2]
435: DecimationFilter/CalFIR/D_reg[7][3]
436: DecimationFilter/CalFIR/D_reg[7][4]
437: DecimationFilter/CalFIR/D_reg[7][5]
438: DecimationFilter/CalFIR/D_reg[7][6]
439: DecimationFilter/CalFIR/D_reg[7][7]
440: DecimationFilter/CalFIR/D_reg[7][8]
441: DecimationFilter/CalFIR/D_reg[7][9]
442: DecimationFilter/CalFIR/D_reg[7][10]
443: DecimationFilter/CalFIR/D_reg[7][11]
444: DecimationFilter/CalFIR/D_reg[7][12]
445: DecimationFilter/CalFIR/D_reg[8][0]
446: DecimationFilter/CalFIR/D_reg[8][1]
447: DecimationFilter/CalFIR/D_reg[8][2]
448: DecimationFilter/CalFIR/D_reg[8][3]
449: DecimationFilter/CalFIR/D_reg[8][4]
450: DecimationFilter/CalFIR/D_reg[8][5]
451: DecimationFilter/CalFIR/D_reg[8][6]
452: DecimationFilter/CalFIR/D_reg[8][7]
453: DecimationFilter/CalFIR/D_reg[8][8]
454: DecimationFilter/CalFIR/D_reg[8][9]
455: DecimationFilter/CalFIR/D_reg[8][10]
456: DecimationFilter/CalFIR/D_reg[8][11]
457: DecimationFilter/CalFIR/D_reg[8][12]
458: DecimationFilter/CalFIR/D_reg[9][0]
459: DecimationFilter/CalFIR/D_reg[9][1]
460: DecimationFilter/CalFIR/D_reg[9][2]
461: DecimationFilter/CalFIR/D_reg[9][3]
462: DecimationFilter/CalFIR/D_reg[9][4]
463: DecimationFilter/CalFIR/D_reg[9][5]
464: DecimationFilter/CalFIR/D_reg[9][6]
465: DecimationFilter/CalFIR/D_reg[9][7]
466: DecimationFilter/CalFIR/D_reg[9][8]
467: DecimationFilter/CalFIR/D_reg[9][9]

 Appendix 6

102

468: DecimationFilter/CalFIR/D_reg[9][10]
469: DecimationFilter/CalFIR/D_reg[9][11]
470: DecimationFilter/CalFIR/D_reg[9][12]
471: DecimationFilter/CalFIR/D_reg[10][0]
472: DecimationFilter/CalFIR/D_reg[10][1]
473: DecimationFilter/CalFIR/D_reg[10][2]
474: DecimationFilter/CalFIR/D_reg[10][3]
475: DecimationFilter/CalFIR/D_reg[10][4]
476: DecimationFilter/CalFIR/D_reg[10][5]
477: DecimationFilter/CalFIR/D_reg[10][6]
478: DecimationFilter/CalFIR/D_reg[10][7]
479: DecimationFilter/CalFIR/D_reg[10][8]
480: DecimationFilter/CalFIR/D_reg[10][9]
481: DecimationFilter/CalFIR/D_reg[10][10]
482: DecimationFilter/CalFIR/D_reg[10][11]
483: DecimationFilter/CalFIR/D_reg[10][12]
484: DecimationFilter/CalFIR/D_reg[11][0]
485: DecimationFilter/CalFIR/D_reg[11][1]
486: DecimationFilter/CalFIR/D_reg[11][2]
487: DecimationFilter/CalFIR/D_reg[11][3]
488: DecimationFilter/CalFIR/D_reg[11][4]
489: DecimationFilter/CalFIR/D_reg[11][5]
490: DecimationFilter/CalFIR/D_reg[11][6]
491: DecimationFilter/CalFIR/D_reg[11][7]
492: DecimationFilter/CalFIR/D_reg[11][8]
493: DecimationFilter/CalFIR/D_reg[11][9]
494: DecimationFilter/CalFIR/D_reg[11][10]
495: DecimationFilter/CalFIR/D_reg[11][11]
496: DecimationFilter/CalFIR/D_reg[11][12]
497: DecimationFilter/CalFIR/D_reg[12][0]
498: DecimationFilter/CalFIR/D_reg[12][1]
499: DecimationFilter/CalFIR/D_reg[12][2]
500: DecimationFilter/CalFIR/D_reg[12][3]
501: DecimationFilter/CalFIR/D_reg[12][4]
502: DecimationFilter/CalFIR/D_reg[12][5]
503: DecimationFilter/CalFIR/D_reg[12][6]
504: DecimationFilter/CalFIR/D_reg[12][7]
505: DecimationFilter/CalFIR/D_reg[12][8]
506: DecimationFilter/CalFIR/D_reg[12][9]
507: DecimationFilter/CalFIR/D_reg[12][10]
508: DecimationFilter/CalFIR/D_reg[12][11]
509: DecimationFilter/CalFIR/D_reg[12][12]
510: DecimationFilter/CalFIR/D_reg[13][0]
511: DecimationFilter/CalFIR/D_reg[13][1]
512: DecimationFilter/CalFIR/D_reg[13][2]
513: DecimationFilter/CalFIR/D_reg[13][3]
514: DecimationFilter/CalFIR/D_reg[13][4]
515: DecimationFilter/CalFIR/D_reg[13][5]
516: DecimationFilter/CalFIR/D_reg[13][6]
517: DecimationFilter/CalFIR/D_reg[13][7]
518: DecimationFilter/CalFIR/D_reg[13][8]
519: DecimationFilter/CalFIR/D_reg[13][9]
520: DecimationFilter/CalFIR/D_reg[13][10]

103

521: DecimationFilter/CalFIR/D_reg[13][11]
522: DecimationFilter/CalFIR/D_reg[13][12]
523: DecimationFilter/CalSinc/DecimationClk/Count_reg[0]
524: DecimationFilter/CalSinc/DecimationClk/Count_reg[1]
525: DecimationFilter/CalSinc/DecimationClk/Count_reg[2]
526: DecimationFilter/CalSinc/DecimationClk/Count_reg[3]
527: DecimationFilter/CalSinc/DecimationClk/DecClkTmp_reg

 Appendix 6

104

